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Abstract

Electrically small antennas trade reception performance for physical size reduction.

The SQUID maximizes the reception performance; still achieving a physically small size

leading to satisfying the demanding antenna requirements of an airborne high frequency

direction finding antenna system. High frequency electromagnetic reception for a direct

current (DC) superconducting quantum interference device (SQUID) is simulated using

the resistor-capacitor-shunted-junction (RCSJ) electronic circuit model, producing a set

of two-dimensional ordinary differential equations to describe the electrical operating

characteristics for the DC SQUID. A time-varying magnetic flux, consisting of frequencies

from the HF band, is applied to characterize the voltage response of the DC SQUID. An

instantaneous voltage develops across the DC SQUID, although a fast time-average must

be computed to produce usable voltage samples. These voltage samples are shown to be

representative samples of the applied time-varying signal containing a voltage bias. The

waveform produced from these voltage samples is periodic, while preserving the phase of

the incident signal. The HF reception characteristics of a single DC SQUID is shown,

including an examination for expanding the loop area, simulating a DC SQUID array.

Additionally, the DC SQUID is compared to the MGL-S8A BDOT sensor using by optical

responsitivity.
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SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES FOR THE

DETECTION OF MAGNETIC FLUX AND APPLICATION TO AIRBORNE HIGH

FREQUENCY DIRECTION FINDING

I. Problem Statement

Airborne direction finding (DF) in the high frequency (HF) band of the electromagnetic

(EM) spectrum provides potential for practical military applications. Examples of

military application include using an airborne HF DF system for electronic Intelligence,

Surveillance, and Reconnaissance (ISR) and airborne navigation. Airborne HF DF will

expand military counterinsurgency operations into the HF band of the EM spectrum, al-

lowing for the radio-localization of enemy HF communication systems. Airborne HF DF

will also provide a capability enhancement for airborne navigation by providing the ability

to navigate using known HF emitter locations, such as the Standard Time and Frequency

signals broadcast throughout the globe.

An airborne HF DF system has several theoretical problems arising from the use of

a spatially limited platform to host a DF antenna system, and with the use of electrically

small antenna (ESA)s for the reception of HF signals. Conventional DF is performed using

an antenna array spanning multiple wavelengths of the operating frequency to produce a

detectable phase difference at each individual antenna element. HF wavelengths spatially

extend from 10 to 100 meters and the host airframe measures 41 meters in length with a

wingspan of 39 meters [1]. At the low frequency portion of the HF band, the airframe limits

the physical size of the antenna array to be less than half of a wavelength, causing degraded

DF performance. This problem is further complicated with the use of ESAs to receive HF

signals. ESAs trade reception performance for the reduction of physical size [22]. The poor
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radiation efficiency of ESAs require additional amplifiers to achieve the minimum signal

to noise ratio (SNR) required for DF. The aforementioned theoretical issues have been the

focus of several research efforts.

AFRL contracted the Berrie-Hill Corporation to evaluate the feasibility of conducting

DF operations on-board a RC-135 airframe [42], shown in Figure 1.1. The Berrie-Hill

corporation used the ”Theory of Characteristic Modes for Conducting Bodies” developed

by Roger Harrington to determine the optimum antenna locations for this airframe [42].

The Theory of Characteristic Modes states that the radiation properties of an electrically

small conducting surface can be characterized using only a few modes [24]. The radiation

properties of the airframe were found using this theory and the optimum antenna locations

for HF EM reception were found by numerical computation. The Berrie-Hill research

continued with a DF performance analysis for the computed antenna locations. Their

results show that DF is possible with the RC-135 airframe using structurally integrated (SI)

antennas.

Airborne HF DF research continued at the Air Force Institute of Technology (AFIT)

with Captain Clair Corbin [18]. Captain Corbin evaluated alternative direction of

arrival (DOA) estimation techniques to improve azimuthal resolution and found azimuthal

resolution of < 1o with a SNR of 10 dB [18]. The size of the Berrie-Hill SI antenna

design was not compatible with flight, so Captain Ryan Hardin and Captain Michael

Archer investigated using small MGL-S8A magnetic field sensors for HF EM detection

[9, 23]. Their research found that the sensitivity of the MGL-S8A sensors did not

exceed or match the reception characteristics of the Berrie-Hill SI antenna design. The

recent advancements in the field of superconductivity have enabled the possibility of a

superconducting ESA. This thesis examines the detection of HF EM energy using an ESA

based on superconductors and quantum mechanical principles for application to airborne

HF DF.
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Figure 1.1: RC-135 airframe considered for an airborne high frequency direction finding
antenna system. [1]

1.1 Introduction

The HF spectrum offers improved long-range communication performance due to

the propagation characteristics of HF EM waves. The HF range is internationally and

domestically defined to encompass the range 3-30 megahertz (MHz) [2–4, 6]. The uses of

the HF spectrum include [5, 6, 20],

• Voice and/or data communication with remote locations

• Voice and/or data communication with ground, maritime, and aeronautical platforms

• International distress

• International broadcast and communication

• International time and frequency signal emissions

An airborne DF system operating within the HF spectrum provides numerous military

applications. An airborne HF DF system will provide an alternate means of aeronautical
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navigation using known HF source emitters, such as the Standard Time and Frequency

emissions or international broadcasting stations. This system contains potential to reduce

the United States (U.S.) military reliance on Global Positioning System (GPS) based

navigation systems by providing an alternate aeronautical navigation capability. In addition

to navigation, the airborne HF DF system provides a mobile airborne ISR capability

to intercept and analyze HF communications and waveforms at a considerable standoff

distance.

1.2 Research Goals

The goal of this research effort is to determine the feasibility of HF EM reception

using a superconducting ESA for application to an airborne DF system. Previously, Captain

David Archer evaluated the MGL-S8A B-DOT magnetic field sensor for airborne HF DF

[9]. Captain Archer concluded the MGL-S8A did not possess the required sensitivity

for airborne HF DF in a comparison with the Berrie-Hill SI antennas [9], and proposed

the use of superconducting quantum interference device (SQUID) technology as a viable

alternative for the detection of HF EM enegy. This research begins with an examination

of the current state of superconducting technology and research. A device capable for

the detection of HF EM energy is selected and modeled. The model is verified with

an examination of computer simulations and with a comparison to completed research

within the superconducting field. AFIT does not possess SQUID sensors for laboratory

superconducting research, thus results will be limited to computer generated solutions. The

goals of this research are outlined below,

• Examine superconducting technology to determine the state of superconducting

research

• Identify applicable superconducting technology and implement models for HF sensor

characterization

4



www.manaraa.com

• Simulate HF reception using the superconducting sensor model

• Examine the HF reception characteristics to determine EM sensitivity

1.2.1 Scope.

The scope of this research will be limited to numerical evaluation. The HF super-

conducting sensor design is characterized using the electrical operating characteristics, the

produced waveform, and the expected sensitivity achieved with superconducting technol-

ogy. This research is completed using mathematical models and computer simulations. A

hardware evaluation of SQUID technology is not performed. The atmospheric propaga-

tion characteristics in the HF environment, such as sky-waves and ionosphere skip are not

considered. The environmental design considerations for an airborne environment are not

considered.

1.2.2 Assumptions.

The general assumptions made during the completion of this research effort include:

• Electromagnetic propagation is in free, unbounded space

• Sensors are illuminated by plane waves in the farfield region

• Thermal noise is modeled as additive white Gaussian noise (AWGN)

• Physical device construction is perfectly symmetric to exclude asymmetrical effects

impacting SQUID performance

1.3 Resource Requirements

The resources required to successfully complete this research effort include:

• Matrix Laboratory (MATLAB)
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1.4 Document Overview

This thesis presents the reception of HF EM energy using superconducting technology

and the application to airborne HF DF. Chapter 2 presents the theoretical foundation of

superconductivity and applicable superconducting technology for airborne HF DF. Chapter

3 presents the methodology for evaluating a superconducting based antenna element design.

Chapter 4 presents the results of numerical simulations and experiments. Chapter 5 presents

the conclusions and future work for the continuation of this research project.
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II. Background

Chapter II provides an introduction to superconducting theory, superconducting

magnetic flux sensing, and the application of superconducting quantum interference

technology to airborne HF EM detection.

2.1 Previous Research

Airborne HF DF research began at AFIT with the evaluation of DF capability on board

the unmanned aerial vehicle (UAV) by Dixon and Akers [7, 19]. A research effort was also

performed by AFRL using a large airborne platform. AFRL contracted the Berrie-Hill

Research Corporation to determine airborne DF feasibility using the RC-135 [42]. The

research performed by the Berrie-Hill Corporation found airborne HF DF is achievable

with strategically placed SI antennas. Captain Michael Corbin furthered airborne HF DF

research by evaluating DF algorithms for improved angle of arrival (AOA) estimation and

found azimuthal resolution of less than 1 degree is achievable with a minimum SNR level

of 10 dB. Next, Captain Ryan Hardin evaluated the performance of two BDOT magnetic

field sensors, and down-selected the best sensor for the HF band. Captain Michael Archer

continued Captain Hardin’s research with the down-selected BDOT magnetic sensor to

conduct HF EM simulations on a generic airframe built to the RC-135 dimensions. Captain

Archer concluded that the magnetic field sensor did not possess the required level of

sensitivity necessary for airborne HF DF and proposed the SQUID as a candidate for

airborne HF DF.

2.2 Superconductivity

The state of superconductivity was discovered by Dutch physicist Heike Onnes in

1911 [12]. Onnes discovered that the mercury sample he was experimenting with exhibited

zero electrical resistance when cooled to 4 Kelvin. Onnes’s discovery opened the field of
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superconductivity and spurred superconducting research. Superconducting research started

with the goals of:

• Finding and characterizing other superconducting materials

• Explaining the state of superconductivity

Early superconducting research focused on finding or creating new superconducting

materials. It wasn’t long before new superconducting materials were discovered, with each

material having a unique critical temperature. The critical temperature is the temperature

at which the material enters the superconducting state [12]. An effort to find higher

critical temperatures soon developed with the goal of discovering a room temperature

superconducting material. The room temperature superconductor will revolutionize the

electronics field by allowing the development of near loss-less power distribution systems,

enabling the creation of ultra low noise amplifiers, and generally enhancing the electronics

field entirely.

Superconductors are classified into multiple categories that are divided by the theory

of operation (Type I and Type II superconductors), by critical temperature (high and low

temperature superconductors), or by the material itself. The constituent material parameters

that contribute to the superconducting state still remain unknown and, as a result, the

discovery of new superconducting materials has been reduced to the process of trial and

error [12]. High temperature superconducting research is focused on critical temperatures

above 77 K, with the primary material being YBa2Cu3O7−x or yttrium barium copper

oxide (YBCO), having a critical temperature of 93 K. The primary cooling refrigerant used

for high temperature superconductivity is liquid Nitrogen with a cooling temperature of

77 Kelvin. Low temperature superconducting research is focused on critical temperatures

below 77 K. There are several material types that are used for this temperature range with

Niobium as the most commonly used material. The primary cooling refrigerant used is

liquid Helium, allowing for a cooling temperature of 4.7 K.
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2.2.1 Superconducting State.

The superconducting state is characterized by zero electrical resistance and the

expulsion of magnetic fields from within the material, known as the Meissner Effect. The

superconducting state is entered when the material is cooled below the critical temperature,

TC. The critical temperature is different for each superconducting material. Multiple

theories have been developed to explain the state of superconductivity but the only theory

found to provide an adequate description is the Bardeen-Cooper-Schreiffer (BCS) theory.

The BCS theory describes superconductivity as the interaction between the formation of

Cooper electron pairs and the crystal lattice formed by the material’s protons. The BCS

theory has been shown to be valid only for low temperature superconductivity. High

temperature superconductivity is not well explained by the BCS theory description. This

leads to the division between Type 1 and Type II superconductors. Type I superconductivity

is explained by BCS theory. Type II superconductivity is not well explained using BCS

theory. The superconducting description for Type II materials is an active area of research

in the field of quantum physics.

2.2.2 Quantum Mechanics.

Quantum mechanics attempts to provide a mathematical description for the physical

processes in the universe. This math description starts with finding the wave function

of an elementary particle Ψ(x, t). The wave function describes a quantum object for all

future time, given suitable initial conditions, and is found by solving the time independent

Schrödinger equation [21],

jh̄
∂Ψ

∂t
= −

h2

2m
∂2Ψ

∂x2 + VΨ (2.1)

with j equal to
√
−1, Plancks constant h, the particle mass m, and the particle location

x. The wave function can be represented as a series of linearly separable wave solutions

taking the form [21],

Ψ(x, t) =

∞∑
n=1

cnΨn(x, t) (2.2)
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where cn is the set of wave function constants. The wave function has a statistical

interpretation with the probability for finding the quantum particle’s location by taking

the integral of the magnitude squared of the wave function over the given region [21].

P(a ≤ x ≤ b|t = t0) =

∫ b

a
|Ψ(x, t)|2dx (2.3)

A solution for the wave function takes the form [16],

Ψ(x, t) = |ψ(x, t)| exp jδ(x, t) (2.4)

with magnitude ψ and phase δ that is a function of the particle’s location at a given time.

2.2.3 Magnetic Flux Quantization.

The magnetic flux threading a superconducting ring was predicted to be quantized

in the units of the magnetic flux quantum. This result arises from requirement for the

macroscopic wave function being single valued inside a superconducting ring. The phase

δ(x, t) has a unique solution for each x location along the superconducting ring when no

current or magnetic fields are applied to the ring. When the ring is threaded by a magnetic

flux, the phase around the loop will change by 2πn, where n is the number of enclosed

magnetic flux quanta. The magnetic flux quantum is defined as,

Φ0 =
h̄
2e

(2.5)

Where Planck’s constant is h̄ = 6.66x10−34Joule − second and e is the electron charge. The

value of the flux quantum is Φ0 = 2.07x10−15 Wb.

2.2.4 The Josephson Effect.

The Josephson Effect is the tunneling of supercurrent through a barrier that physically

separates two superconducting electrodes. The voltage potential across the junction

remains at zero until the supercurrent exceeds a current threshold, termed the critical

current, IC. The Josephson Effect is observed in a junction constructed by placing a

barrier in-between two superconducting electrodes. The barrier can be constructed as
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a thin insulating layer, a narrow constriction of the conductor path, or with a thin layer

of different superconducting materials. This junction is named after Brian D. Josephson,

whom in 1962 mathematically predicted the occurrence of tunneling supercurrent through

the superconducting junction design [26]. The junction design describes a capacitor in

normal electromagnetic theory with conventional materials. A physical depiction of the

Josephson junction is shown in Figure 2.1. The defining parameters of the junction are the

Figure 2.1: Physical depiction of a Josephson junction

length, width, and height of the barrier, and the superconducting and barrier materials used

for construction. The super current, IS , flowing through the Josephson junction is given by

[25],

IS = IC sinδ (2.6)

where IC is the critical current and δ is the phase difference between the macroscopic

superconducting wave functions at each superconducting electrode, δ = Ψ1 − Ψ2. The

critical current, IC, is a function of junction materials and physical dimensions. Josephson

postulated that a voltage develops across the junction when a time-varying phase difference

is present. The voltage and phase relationship is given by,

δ̇ ≡
∂δ

∂t
=

2eU
h̄

=
2πU
Φ0

(2.7)

11
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where δ is the phase difference between the wave functions Ψ1 and Ψ2, δ̇ is the time

derivative of δ, U is the instantaneous voltage across the junction, e is the charge of one

electron e = 1.602x10−19 Coulombs, Plank’s constant h̄ = 6.66x10−34Joule − second,

and the magnetic flux quantum Φ0 = 2.0678x10−15 Webers. Equations 2.6 and 2.7

mathematically define the operating characteristics of the junction, and are commonly

known as the Josephson relations.

The supercurrent flowing through the junction is described as the tunneling of Cooper

electron pairs traveling through the barrier. The current flow is termed supercurrent to

distinguish this type of current flow from the conventional depiction of current flow. The

Josephson effect was experimentally observed by P. Anderson and J. Rowell in 1963 using

a thin tin oxide barrier between the superconducting metals Tin (Sn) and Lead (Pb) [8].

2.2.5 Modeling.

The superconducting state was initially thought of as the perfect electric conductor

(PEC). The PEC and the superconductor share the zero electrical resistance trait, however

the PEC description was discovered to be inadequate because this description does not

account for the superconductor expelling all magnetic flux from within the superconductor,

known as the Meissner effect [13]. While both the PEC and the superconductor do not

allow the formation of a time-varying magnetic fields within the conductor itself, the PEC

will allow for a static magnetic field to exist inside the conductor. The superconductor

differs because all magnetic flux is expelled from within the superconductor.

EM simulation software currently available has limited support for superconductor

modeling and EM simulation of the Josephson junction is currently nonexistent. The

junctions mathematical description is the only method available for simulating the electrical

performance of the junction.
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A circuit representation is used to mathematically model the electrical characteristic of

the Josephson junction. There are three circuit representations for the Josephson junction

[29].

• The Resistively-Shunted-Junction (RSJ) Model

• The Tunnel-Junction-Microscopic (TJM) Model

• The Nonlinear-Resistive (RSJN) Model

These circuit representations describe the junction using a parallel configuration of a

resistor, noise current source, and a junction element. The representations differ with

the implementation of the super current, IS , flowing through the junction element. The

RSJ model uses a linear IS equation, the TJM model uses a piece-wise continuous IS

equation, and the RSJN model uses a nonlinear IS equation. The most commonly used

model is the RSJ model, however a capacitor circuit element is added to better model

the junction electrical characteristics [16], and is named the Resistor Capacitor Shunted

Junction (RCSJ) model. The RCSJ model is shown in Figure 2.2.

The electrical operating characteristic of the Josephson junction is described by the I-V

characteristic curve, and shows the relationship between the junction current and junction

time-averaged voltage. Figure 2.3 shows an example I-V curve depicting the general

relationship between current and time-averaged voltage by showing that zero junction

voltage develops for current values less than the critical current IC, and non-zero voltage for

when the junction critical current is exceeded. A hysteresis loop develops for under damped

junctions and is described by a double valued curve in the I-V characteristic curve. One

curve is produced when the current is increased and the other when the current is decreased.

An example of hysteresis is shown in Figure 2.4. The amount of hysteresis is proportional

to the junction resistance and is reduced by decreasing the junction capacitance, C.
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Figure 2.2: Resistor-Capacitor-Shunted-Junction electrical schematic

Figure 2.3: Example Josephson junction
I-V electrical characteristic curve

Figure 2.4: Example Josephson junction
I-V electrical characteristic curve showing a
hysteresis loop

The RCSJ model has been experimentally shown to accurately describe the electrical

behavior of the junction at low superconducting temperatures, however the model is less

accurate for high superconducting temperatures [16].

The instantaneous junction voltage U(t) is found using Kirchoff’s current law on

the RCSJ circuit representation to write the nodal current equation at node A, shown
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as Ibias + IN = IR + IC + IS . The current equations for the resistor current IR = U(t)/R,

capacitor current IC = C∂U(t)/∂t, and junction current IS = IC sin(δ) are substituted into

the nodal current equation to produce an equation for the junction voltage U(t), expressed

as

Ibias + IN =
U(t)

R
+ C

∂U(t)
∂t

+ IC sin(δ) (2.8)

where Ibias is the junction bias current, IN is the thermal noise current in the junction, R is

the junction resistance, C is the junction capacitance, IC is the junction critical current, δ

is the phase difference of superconducting wave function across the junction, and U(t) is

the instantaneous junction voltage. By taking the time-derivative of the Josephson phase

relation, δ̇ = 2π
φ0

U, a second order relationship between ∂U(t)/∂t and phase δ is produced.

∂δ̇

∂t
=
φ0

2π
δ̈ =

∂U(t)
∂t

(2.9)

The second order phase relationship given by Equation 2.9, and the Josephson phase

relation given by Equation 2.7, are used to write the nodal current equation from Equation

2.8, as [16],

Ibias + IN =
1
R
φ0

2π
δ̇ + C

φ0

2π
δ̈ + IC sin(δ) (2.10)

The phase δ quantities from Equation 2.10 are separated from the current quantities to

produce,

C
φ0

2π
δ̈ +

1
R
φ0

2π
δ̇ = Ibias − IC sin(δ) + IN (2.11)

The junction’s critical current IC is used to normalize Equation 2.11, leading to the

development and introduction of two critical junction parameters, the Stewart-McCumber

parameter and the characteristic frequency.

C
IC

φ0

2π
δ̈ +

1
ICR

φ0

2π
δ̇ =

Ibias

IC
− sin(δ) +

IN

IC
(2.12)

The constant terms are manipulated and arranged to allow the introduction of the Stewart-

McCumber parameter βC and junction’s characteristic frequency ωC. The equation is
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manipulated into the form,

2πICR2C
Φ0

(Φ0)2

(2πRIC)2 δ̈ +
Φ0δ̇

2πICR
=

I
IC
− sin(δ) +

IN

IC
(2.13)

The Stewart-McCumber parameter βC is used to quantify the level of damping in the

junction and indicates the amount of hysteresis observed in the I-V characteristic curve,

and is defined as,

βC ≡
2π
Φ0

IcR2C (2.14)

The characteristic frequency ωC represents the resonant frequency of the junction and is

defined as,

ωC ≡
2π
Φ0

ICR (2.15)

The Stewart-McCumber parameter and the characteristic frequency are substituted into

Equation 2.13 to produce,

βC
δ̈

ω2
C

+
δ̇

ωC
=

Ibias

IC
− sin(δ) +

IN

IC
(2.16)

Equation 2.16 is a second order ordinary differential equation (ODE) that defines

the electrical operating dynamics for the Josephson junction for normal time. The

instantaneous junction voltage is found using the Josephson phase relationship, δ̇ = 2π
φ0

U(t).

The numerical precision of the solution relies on the numerical precision of the

numbers involved. Equation 2.16 is normalized by introducing the time relationship,

τ = ω−1
C , to allow computer analysis of the junction response to remain with the numerical

precision of floating point representation, specifically with using the small values Φ0, ω−1
C ,

and IC. The normalized time relationship is given by [16],

τ = ω−1
C =

Φ0

2πICR
(2.17)
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with the magnetic flux quantum Φ0, critical current IC, and resistance R. The relationships

for the first and second derivatives with respect to normalized time are given by,

δ̇ =
∂δ

∂τ
=
∂δ

∂τ

∂τ

∂t
(2.18)

δ̈ =
∂2δ

∂t2 =
∂2δ

∂τ2

∂τ2

∂t2 (2.19)

with ∂τ
∂t = τ = ω−1

C and ∂τ2

∂t2 = τ2 = ω−2
C . The time normalization produces the model

equation,

βC δ̈ + δ̇ =
Ibias

IC
− IC sin(δ) +

IN

IC
(2.20)

Equation 2.20 is a second order ODE that defines the electrical operating dynamics for the

Josephson junction in normalized time. Equation 2.20 reduces to the resistively shunted

junction (RSJ) model equation when the condition βC � 1 is used [16].

The Josephson junction I-V characteristic curve is analytically expressed with the

equation [16],

V = R(I2
bias − I2

C)1/2 (2.21)

for the condition Ibias ≥ IC with the time-averaged junction voltage V , resistance R, bias

current Ibias, and critical current IC. Equation 2.21 analytically defines the Josephson

junction I-V electrical characteristic curve, but excludes the thermal noise current IN . The

thermal noise current, IN , in the junction has a spectral density of [16],

S I( f ) =
4kBT

R
(2.22)

where, kB is Boltzmann’s constant, T is the operating temperature, and R is the resistance.

The thermal noise current is modeled in the RCSJ circuit representation as an additional

current source and is accurately predicted for low superconducting temperatures, however

the current is off by an order of magnitude for high superconducting temperatures [16].

2.2.6 Superconducting Quantum Interference Device.

The SQUID is a device used to transduce magnetic flux into voltage. The SQUID

operates on the Josephson Effect and magnetic flux quantization phenomena for the
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ability to transduce magnetic flux to voltage, allowing for sensitive measurements of

magnetic flux. The SQUID remains the most sensitive magnetic flux measurement device

available due to its low thermal noise characteristics and high magnetic flux sensitivity

[15]. The SQUID is constructed using a combination of Josephson junction placed inside

a superconducting ring. There are three configurations of the SQUID: the radio frequency

(RF) SQUID, direct current (DC) SQUID, and the BI-SQUID.

2.2.6.1 Radio Frequency SQUID.

The RF SQUID consists of one Josephson junction placed in a superconducting ring

with the geometry shown in Figure 2.5. The electrical operating dynamics are defined by

Figure 2.5: RF SQUID geometry

one Josephson junction and the principle of flux quantization to produce [16],

C
∂2δ

∂t2 +
1
R
∂δ

∂t
+

(
2π
Φ0

)2
∂U(t)
∂δ

= IN
2π
Φ0

(2.23)

with capacitance C, phase difference δ, resistance R, instantaneous junction voltage U(t),

and noise current IN . The RF SQUID voltage output is measured using an inductively

coupled resonant circuit, thus the voltage is not directly read from the RF SQUID itself.

The superconducting loop forms an inductance that is mutually coupled with the inductance

of an parallel inductor-capacitor (L-C) resonant circuit. The L-C component values are

chosen to allow a RF resonance to develop, with typical resonance frequencies ranging
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from 20 MHz to 10 GHz. The amplitude of the RF voltage is periodic with the applied

flux, containing a period of Φ0 [16].

The energy sensitivity of the RF SQUID is compared with the energy sensitivity of

the direct current SQUID by T. Ryhanen and H. Seppa [35]. They show the RF SQUID

typically contains an energy sensitivity of 2kBTA/(ωCβLk2QT ) with TA being the amplifier

temperature, k being a inductance coupling coefficient, and QT being the resonant circuit Q-

value. The DC SQUID typically contains an energy sensitivity of 8kBT/(ωC). Using their

design parameters for SQUID inductance 0.2 nH, resonant circuit inductance of 10 nH,

SQUID shunt resistance of 1.3 Ω, the energy sensitivity for the RF SQUID is 2×10−27J/Hz

and 7×10−32J/Hz for the DC SQUID. The RF SQUID is less sensitive than the DC SQUID,

but it was the preferred SQUID for early research because it only contained one Josephson

junction. The ability to fabricate reliable junctions proves to be difficult, especially with

high temperature superconductivity [28].

2.2.6.2 Direct Current SQUID.

The DC SQUID consists of two Josephson junctions arranged symmetrically around

a superconducting ring using the geometry shown in Figure 2.6. The RCSJ circuit

representation for the DC SQUID is shown in Figure 2.7. The superconducting ring forms

an inductance L and is incorporated into the circuit representation. The magnetic flux

passing through the superconducting ring is converted to a voltage that it oscillatory with a

period of Φ0 [16].

The electrical operating dynamics are defined by two Josephson junctions and the

relationship between the phase differences for each junction is given by the principle of

flux quantization. The DC SQUID electrical dynamics are modeled using the equations
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[16],

Ibias

2
+ J = IC,1sin(δ1) +

Φ0

2πR1
δ̇ +

Φ0

2π
C1δ̈ + IN,1 (2.24)

Ibias

2
− J = IC,2sin(δ2) +

Φ0

2πR2
δ̇ +

Φ0

2π
C2δ̈ + IN,2 (2.25)

δ2 − δ1 =
2π
Φ0

(ΦA + LJ) (2.26)

where ΦA is the applied flux, L is the inductance of the superconducting ring, and J is

the screening supercurrent circulating around the ring, δ1 and δ2 are the phase differences

across Josephson junction 1 and 2, respectively, capacitance C1 for junction 1 and C2

for junction 2, resistance R1 for junction 1 and R2 for junction 2, critical current IC,1 for

junction 1 and IC,2 for junction 2, and thermal noise current IN,1 for junction 1 and IN,2 for

junction 2. The superconducting ring is assumed to be perfectly symmetric, excluding

Figure 2.6: DC SQUID Geometry

any effects resulting from asymmetry. The two Josephson junctions are assumed to be

perfectly identical, allowing for the two Josephson junctions to be model as one. The
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Figure 2.7: DC SQUID electrical schematic

identical junctions result in the combination of the electrical parameters as,

R = 2
R1R2

R1 + R2

C =
C1 + C2

2

IC =
IC,1 + IC,2

2

The constant terms are manipulated and the Stewart-McCumber damping parameter βC and

junction characteristic frequency ωC are used to reduce Equations 2.24, 2.25, and 2.26 into,

Ibias

2
+ J = IC sin(δ1) +

δ̇1

ωC
+ βC

δ̈1

ω2
C

+ IN (2.27)

Ibias

2
− J = IC sin(δ2) +

δ̇2

ωC
+ βC

δ̈2

ω2
C

+ IN (2.28)

δ2 − δ1 =
2π
Φ0

(ΦA + LJ) (2.29)

Equations 2.27, 2.28 and 2.29 are normalized into dimensionless form using the junction

critical current IC, time normalization τ = ω−1
C , and the phase derivative relationships from

Equation 2.18 and 2.19. The normalized variables ibias = Ibias/IC, j = J/IC, and in = IN/IC,
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and normalized phase derivatives δ̇ and δ̈ are used to produce the equation set,

ibias

2
+ j = sin(δ1) + δ̇1 + βC δ̈1 + in (2.30)

ibias

2
− j = sin(δ2) + δ̇2 + βC δ̈2 + in (2.31)

δ2 − δ1 =
2π
Φ0

(ΦA + LJ) (2.32)

The normalization allows the computed solution to remain within the numerical precision

of floating point representation. The modulation parameter βL is used to reduce the phase

relationship and is defined as,

βL =
2LIC

Φ0
(2.33)

The final expression for the DC SQUID equations are,

ibias

2
+ j = sin(δ1) + δ̇1 + βC δ̈1 + in (2.34)

ibias

2
− j = sin(δ2) + δ̇2 + βC δ̈2 + in (2.35)

δ2 − δ1 = 2π(φa +
1
2
βL j) (2.36)

where φa is the normalized applied flux φa = ΦA
Φ0

, j is the normalized circulating current

j = J
IC

, ibias is the normalized bias current ibias =
Ibias
IC

, in is the normalized junction thermal

noise in = IN
IC

, and δ1 and δ2 are the phase differences across Josephson junction 1 and 2,

respectively.

The DC SQUID is most often operated with a flux locked loop circuit to linearize the

response of the SQUID [16]. The flux feedback modifies the flux state inside the ring so

that the flux is opposed and canceled. The result is the output voltage exhibits a linear

response to the input flux.
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Figure 2.8: Flux lock loop circuit for a DC SQUID [16].

2.2.7 Current Research.

The development of superconducting research has been primarily focused in the

field of medical research. The high magnetic sensitivity of these devices matches well

with magnetic resonance imaging (MRI), thus they are the primary sensing element of

several MRI systems around the world. Although SQUIDs are sensitive, they have seen

limited antenna design development due to the limited dynamic range of the support

electronics used in the SQUID designs. The breakthrough came with the development

of the superconducting quantum interference filter (SQUIF) in 2000 [33]. This new

configuration allows for the linearization of the voltage transfer function and opened up

the possibility of these devices to be used as antenna elements however the fabrication

of reliable junctions has proven to be challenging. In 2009, a new configuration was

discovered that also linearizes the voltage transfer function. This configuration adds an

additional junction across the middle of the DC SQUID, and is termed the BI-SQUID [41].

This configuration adds a third junction across the middle of the superconducting loop to

achieve a linearized transfer function.
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2.2.7.1 BI-SQUID.

The BI-SQUID is a tri-junction device that expands the linear region of the flux to

voltage transfer function. The BI-SQUID is based on the DC SQUID design, adding

an additional Josephson junction across the superconducting ring. Figure 2.9 shows the

geometry of the BI-SQUID device. The electrical operating dynamics of the BI-SQUID

Figure 2.9: BI-SQUID Geometry

are given by the equations,

δ̇1 =
ibias

2
−

1
3L

(δ1 − δ2 − δ3) +
1
3

iC3 sin(δ2 − δ1) −
2
3

sin(δ1) −
1
3

sin(δ2) (2.37)

δ̇2 =
ibias

2
+

1
3L

(δ1 − δ2 − δ3) −
1
3

iC3 sin(δ2 − δ1) −
1
3

sin(δ1) −
2
3

sin(δ2) (2.38)

where, iC3 is the critical current of the third junction, L is the SQUID inductance, δ1,2,3 is

the phase across the 1st, 2nd, and 3rd junctions, respectively, and ibias is the normalized

bias current for the BI-SQUID.

2.2.7.2 Superconducting Quantum Interference Filter.

The SQUIF is composed of a parallel configuration of DC SQUIDs with a uniform

distribution placed on the area contained by each superconducting ring. The SQUIF is

designed to linearize the flux to voltage transfer function. The uniformly distributed areas

allow for the coherent addition of detected magnetic flux.
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2.3 Signal Power Transmission

The Poynting vector is the quantity used to describe the power associated with

propagating EM radiation [10, 11]. This quantity relates the power of the EM wave to

the field intensity of the electric and magnetic fields. The Poynting vector is defined as

~P = ~E × ~H (2.39)

where ~P is the instantaneous Poynting vector given in power density (W/m2), ~E is the

instantaneous electric field intensity (V/m), and ~H is the instantaneous magnetic field

intensity (A/m). The Poynting vector can be used with the power density equation to

determine the magnetic field intensity at a distance R. The power density of an isotropic

antenna is given by [30, 36]

Pr =
Pt

4πR2 (2.40)

where Pr is the received power density (W/m), Pt is the transmit power density (W/m),

and R is the distance from the transmitter to the receiver (m). The power density is used

to describe the 1 way relationship between the transmitted power to the power density at

a distance R and is used to provides the quantitative relationship between the transmitted

power of a transmission site, and the power received at the given range R.

25



www.manaraa.com

III. Methodology

SQUID sensors are used for extremely sensitive magnetic field measurements for

various purposes, such as MRI, non-destructive examination (NDE), and material

characterization [17]. The physical size of these sensors is limited by lithographic processes

but typically range from nanometer to micrometer size SQUIDs [16, 34]. The magnetic

sensitivity and small footprint of SQUID sensors are applicable as the primary magnetic

sensing element for an airborne antenna system. The use of SQUID sensors in an airborne

antenna array can potentially increase HF signal interception range. This research explores

the use of SQUID sensors for this purpose.

3.1 Research Outline

This research effort is focused on the theoretical examination of SQUID technology

with application to airborne HF DF. The SQUID sensor is studied to determine suitability

as the primary magnetic field sensing element for an HF DF antenna array. The HF

sensitivity of the device is determined and a performance evaluation is conducted. The

following outline is used to complete this effort.

• Select a SQUID sensor for examination

• Study the theoretical performance characteristics of the selected sensor

• Characterize the magnetic field sensitivity performance of the selected sensor

• Simulate HF reception and expected range of the sensor

3.2 SQUID Selection

There are four major SQUID configurations: the RF SQUID, DC SQUID, SQUIF, and

the BI-SQUID. Each of these sensors are based on a superconducting ring design with each

containing a unique number of Josephson junctions, however, the SQUIF is constructed
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using a unique arrangement of DC SQUIDs. Each sensor possesses a different magnetic

flux resolution ability and thermal noise level. The DC SQUID has been experimentally

shown to be the most sensitive magnetic flux detector [16]. This research is focused on

maximizing the HF magnetic field reception using these devices, therefore the DC SQUID

is the best candidate for this research. If the DC SQUID cannot receive HF EM energy,

then by similarity, the other configurations will not be able to receive HF EM energy. The

DC SQUID examination begins with computing the electrical operating characteristic for

the device .

3.3 Numerical Simulation

The electrical characteristic of the DC SQUID depend on the electrical characteristic

for the Josephson junction. The Josephson relations, presented in Chapter 2 section

2.2.4, equations 2.6 and 2.7 are used with the RCSJ circuit representation to produce a

second order ODE circuit equation, allowing for a numerical examination of the electrical

characteristic for the Josephson junction.

3.3.1 Partial Differential Equation Numerical Solvers.

The advent of digital computing has allowed development of numerical techniques

for computing solutions to complex equations. Differential equations often require the

assistance of numerical techniques to compute solutions because analytic solutions do not

exist [37]. There are several numerical techniques available for solving partial differential

equation (PDE) and ODE. The most used numerical solvers for differential equations are,

• Euler Method

• Improved Euler Method

• Runge-Kutta Family of Methods
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These methods compute the numerical solution to an initial value problem (IVP) given by

the differential equation (DE) along with an initial condition (IC).

(IVP)


y′(t) = f (t, y(t)) (DE)

y(a) = y0 (IC).
(3.1)

The solution y(t) is computed by incrementally stepping through the equation f (t, y(t)) at a

specified step size h.

The Runge-Kutta-Fehlberg (RKF)-45 method is member of the Runge-Kutta family of

numerical methods. The RKF-45 method is an adaptive and multi-step numerical solver for

IVPs. Given an initial step size, h, and a predefined error limit, ε, the solution is computed

using a fifth order solution approximation. The following scheme describes the RKF-45

method,

t0 = a, y0 = y(a), h = initial step size, ε = error tolerance

k1 = h f (tn, yn) (3.2)

k2 = h f (tn +
h
4
, yn +

1
4

k1) (3.3)

k3 = h f (tn +
3h
8
, yn +

3
32

k1 +
9

32
k2) (3.4)

k4 = h f (tn +
12h
13

, yn +
1932
2197

k1 −
7200
2197

k2 +
7296
2197

k3) (3.5)

k5 = h f (tn + h, yn +
439
216

k1 − 8k2 +
3680
513

k3 −
845

4104
k4) (3.6)

k6 = h f (tn +
h
2
, yn −

8
27

k1 + 2k2 +
3544
2565

k3 +
1859
4104

k4 −
11
40

k5) (3.7)

with the initial condition for time t0, the initial condition for the function y0, step size

h, error tolerance ε, and solution approximations k1, k2, k3, k4, k5, and k6. The solution

approximations are computed in sequential order starting with k1. The approximations k2−6

use the previous approximation within the computation. The final solution is computed by

linearly combining the approximations k1−6 to produce a fifth and fourth order solution.

The step size is adaptive and is dependent on the local truncation error estimate, E, taken
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as the magnitude of the difference between the fifth and fourth order solutions.

zn+1 = yn +
25

216
k1 +

1408
2565

k3 +
2197
4104

k4 −
1
5

k5 (3.8)

yn+1 = yn +
16

135
k1 +

6656
12825

k3 +
28561
56430

k4 −
9

50
k5 +

2
55

k6 (3.9)

E = |yn+1 − zn+1|

=

∣∣∣∣∣ 1
360

k1 −
128

4275
k3 −

2197
75240

k4 +
1

50
k5 +

2
55

k6

∣∣∣∣∣ (3.10)

The step size adapts to the local truncation error estimate using the predefined error

tolerance, ε, and is given by the decision scheme,

• If E > hε reduce h to h
2 and repeat.

• If E < hε
4 accept solution, but increase step size to 2h for the next iteration.

• Otherwise, continue with the step size.

The step size is adjusted to reduce the local truncation error to provide an accurate solution,

however the step size is fixed for the numerical computations performed in this thesis.

Sampling theory must be applied in order to perform a frequency analysis using the discrete

Fourier Transform (DFT), but a fixed step size is required.

3.3.2 Josephson Junction Numerical Simulation.

The evaluation of DC SQUID technology begins with the examination of the

Josephson junction. The Josephson junction is a basic element of the SQUID sensors and

enable the unique electrical operating characteristic. The electrical operating characteristic

for the junction is defined by the Josephson relations, presented in Chapter 2 section

2.2.4, Equations 2.6 and 2.7. The Josephson relations are used in combination with

the RCSJ circuit representation to produce a circuit model equation, allowing for a

numerical examination of the electrical characteristic for the junction. The model equation

is expressed as a second order ODE given by equation 2.20, and is reproduced for
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convenience.

βC δ̈ + δ̇ =
Ibias

IC
− sin(δ) +

IN

IC

Stewart performed an examination of this circuit equation at various βC damping

values [39]. Stewart’s results indicate that the damping level does not significantly alter

the computed solution. Tesche and Clark use Stewart’s result in their examination and

optimization of the DC SQUID [40]. Tesche and Clark explain that typical fabricated

junctions operate at βC ≈ 1 [40], however since Stewart’s damping result shows minimal

difference between βC ≈ 1 and βC = 0, Tesche and Clark proceed to omit βC from their

calculations by setting βC = 0. In addition to numerical reduction, the damping parameter

βC is used to quantify the amount of hysteresis seen in the I-V characteristic curve. The

amount of hysteresis contained in the I-V characteristic curve is minimized as much as

possible by reducing the junction’s capacitance. The junction capacitance is determined

by the junction’s cross sectional area, and is designed to be as small as possible, leading

to the negligible capacitance assumption. In practice, a satisfactory damping parameter is

βC < 0.7 to avoid I-V hysteresis loops in the junction I-V electrical characteristic.

The simulations conducted in this research assume a negligible junction capacitance,

and use βC = 0 for the numerical evaluations. The circuit model equation is reduced to a

first order ODE given by,

δ̇ = ibias − sin(δ) + in (3.11)

where δ is the junction phase difference, δ̇ is the normalized time derivative of δ, U(t) is

the instantaneous junction voltage, ibias is the normalized bias current ibias =
Ibias
IC

, and in is

the normalized noise current in = IN
IC

.

3.3.2.1 Noise-free Simulation.

The RKF-45 ODE numerical solver is used to compute the voltage solution for the

Josephson junction IVP model equation for the noise-free case, in = 0. The thermal noise

current is set to zero to exclude noise effects form the computed voltage solution. The
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noise-free IVP for the Josephson junction is given by,

(IVP)



δ′ =
Ibias
IC
− sin δ (DE)

δ(t0) = 0 (IC)

t0 = 0 (IC)

(3.12)

The RKF-45 solver is implemented to produce a solution for δ′. The instantaneous

junction voltage is found using the second Josephson relationship φ0
2π δ̇ = U(t) to produce,

U(t)
ICR

= ibias − sin δ (3.13)

with the normalized bias current ibias =
Ibias
IC

, critical current IC, resistance R, and phase

difference δ. The instantaneous voltage U(t) is kept in dimensionless form by solving for

U(t)
ICR instead of U(t) directly. 1

ICR is a scaling factor dependent on the critical current of the

junction and resistance.

A series of normalized bias current values ibias are used to check the proper electrical

response of the junction. First, the junction is known to develop a voltage for the case when

the bias current exceeds the critical current. Second, the junction does not develop a voltage

for the case when the bias current does not exceed the critical current. The two voltage

response regions to be checked are: Ibias < IC for zero voltage development and Ibias > IC

for non-zero voltage development. In the normalized sense, these regions are: Ibias
IC

< 1 for

zero voltage development and Ibias
IC

> 1 for non-zero voltage development. First, the zero

voltage case is checked for appropriate response. The bias current is set as Ibias
IC

= 0.5 to

satisfy the Ibias
IC

< 1 condition. Figure 3.1 shows the instantaneous junction voltage U(t)

versus simulation time τ and Figure 3.2 shows the corresponding error estimate for U(t).
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Figure 3.1: Josephson junction voltage response for Ibias = 0.5IC

Figure 3.2: Error estimate for the voltage response with Ibias = 0.5IC
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For Figure 3.1, the instantaneous junction voltage U(t) starts at 0.5, but sharply

decreases to zero as the solution progresses, indicating the proper junction response by

showing zero voltage development across the junction.

Next, the bias current is chosen to exceed the critical current, and the junction voltage

response is observed. A sinusoidal instantaneous voltage waveform is expected because the

solution for the phase will take the form δ = AωCt with A a constant. The instantaneous

voltage solution will then take the form sin(AωCt). The frequency of the instantaneous

voltage solution will increase as the constant A increases. The bias current used for this

simulation is Ibias
IC

= 2. Figure 3.3 shows the instantaneous junction voltage U(t) versus

simulation time τ and Figure 3.4 shows the corresponding error estimate.

Figure 3.3: Josephson junction voltage response for Ibias = 2IC
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Figure 3.4: Error estimate for the voltage response with Ibias = 2

Figure 3.3 shows the development of a sinusoidal voltage across the junction when

the bias current exceeds the critical current. The time average of the instantaneous junction

voltage is 〈U(t)〉 = 1.855.

The time-average will be effected by the time duration over which it is computed. The

duration will need to be sufficiently long to achieve an accurate time-average solution. The

time duration used to compute the time-average is varied to determine minimum duration

length required for an accurate time-average, since the time-averaged voltage will be used

to compute the I-V characteristic curve. A bias current of Ibias
IC

= 2 is used to complete the

duration length analysis. Figure 3.5 shows time-averaged junction voltage as a function of

the time-averaging interval. The time-average solution converges to the voltage mean at

approximately 6000 τ time units and represents the minimum simulation length required

for computing the time-average.
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Figure 3.5: Convergence of the simulation mean to the voltage mean with Ibias = 2

The electrical operating characteristic of the Josephson junction is defined by the

I-V characteristic curve. The I-V characteristic curve depicts the electrical relationship

between the time-averaged instantaneous junction voltage with the junction bias current.

The simulations are completed using normalized current and voltage values since specific

resistance, capacitance, and inductance values are not yet simulated. The normalized

bias currents spanning the numerical set [0 . . . 3] are chosen to complete this simulation

so the voltage response for the junction can be checked. The instantaneous junction

voltage is computed for each bias current and a time-averaged voltage is produced for

the I-V characteristic curve. Figure 3.6 shows the resulting I-V characteristic curve for

the Josephson junction. The I-V characteristic curve demonstrates the expected electrical

behavior of the Josephson junction by showing a non-zero voltage for bias current values

exceeding the critical current and zero-voltage values for when the bias current does not

exceed the critical current.
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Figure 3.6: Noisefree I-V characteristics of the Josephson junction

The RKF-45 implementation is verified using a comparison between the computed

solutions with the analytical solutions for instantaneous voltage and the I-V characteristic

curve. The instantaneous voltage across the junction is analytically expressed as [16],

u(t) =
i2
bias − 1

ibias + cosωt
(3.14)

for ibias =
Ibias
IC

> 1 and with ω = ωC(i2
bias − 1)

1
2 . The time-averaged voltage 〈v〉 that develops

across the junction is given by the expression [16],

〈v〉 =

√
i2
bias − 1 (3.15)

for ibias > 1, with the normalized bias current ibias, and the time-averaged voltage 〈v〉.

The instantaneous junction voltage is computed for the bias currents ibias = {1.1, 2, 5, 8}

to perform a comparison between the computed voltage and the analytical voltage. The

comparison shows that the two solutions are similar but not exact.
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Figure 3.7: Numerically computed

Josephson junction voltage solution using

bias current values 1.1, 2, 5, and 8

Figure 3.8: Analytically computed Josephson

junction voltage solution using bias current

values 1.1, 2, 5, and 8

Figure 3.7 presents the RKF-45 computed instantaneous junction voltage and Figure

3.8 presents the analytical instantaneous junction voltage. There are slight variations

between the two solution sets. The phase of the RKF-45 voltage solution is distorted and

contains a phase offset of 20 degrees compared to the analytical voltage solution. These

artifacts may be attributed to the RKF-45 numerical technique; but these differences do not

significantly affect the final time-averaged junction voltage computed for the I-V curve,

shown in Figure 3.9. The I-V characteristic curve is computed using a bias current range

ibias ∈ {0 . . . 5} to show the amount of error between the RKF-45 numerical solution and the

analytical solution over a large range.

Figure 3.9 shows the comparison between the voltage simulation of the I-V curve with

the analytical expression given by 3.15. The slight differences between the two solutions

can be attributed to the computational variation in the RKF-45 numerical solution. The

differences seen do not significantly influence the accuracy of the computed solutions with

a maximum error between the two data sets being 0.14, indicating the RKF-45 numerical
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technique is successful for numerically computing junction voltage solutions. The error

between these two data sets is shown in Figure 3.10. Next, the RKF-45 method is used to

examine the effects of thermal noise in the Josephson junction.

Figure 3.9: Josephson junction I-V characteristic computed using the RKF-45 solver and
the analytical equation

Figure 3.10: Difference between the RKF-45 I-V solution and the analytical voltage
solution shown in the I-V characteristic curve

3.3.2.2 Thermal Noise Simulation.

The Josephson junction operates at thermal temperatures ranging from 4.7 to 77

Kelvin, however, thermal fluctuations are still present at these temperatures. The thermal

fluctuations contribute toward a noise current flowing through the junction. The spectral
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density of the thermal noise current through a Josephson junction is given by [16],

S I(ω) =
2kBT
πR

(3.16)

S I( f ) =
2kBT

R
(3.17)

where kB is Boltzmann’s constant, T is the operating temperature (K), R is the junction

resistance (Ω). The Wiener-Khintchine-Einstein Theorem relates to the noise spectral

density as a time-domain statistical process. For a non-stationary process, the theorem

is written as [32]

S XX( f ) =

∫ ∞

−∞

〈RXX(t, t + τ)〉e− j2π f τdτ (3.18)

with the spectral density S XX( f ), and auto correlation sequence RXX. The time-average is

denoted by 〈〉, The junction spectral density is normalized into dimensionless units so that

it may be included into the junction model equation.

The normalization starts with computing the time-average auto correlation sequence

using the normalized noise current.

S i(ω) =

∫ ∞

−∞

〈
IN

IC
(t)

IN

IC
(t + τ)〉e− j2π f τdτ =

2kBT
πRI2

C

(3.19)

Additional parameters φ0 and 2π are introduced to produce,

S i(ω) =
2π
2π
φ0

φ0

2kBT
πRI2

C

=
2
π

2πkBT
φ0IC

φ0

2πICR
(3.20)

A noise normalization parameter, Γ, is introduced and defined as Γ = (2πkBT )/(φ0IC) [16].

Γ and the junction frequency ωC are used to reduce the expression into

S i(ω) = 2
2πkBT
φ0IC

φ0

2πICR
=

2Γ

πωC
(3.21)

The noise current is modeled in the time-domain as variable with a Gaussian

distribution having the statistical properties [16],

〈in(t)〉 = 0 (3.22)

〈in(t), in(t + τ)〉 =
2Γ

ωc
δ(τ) (3.23)
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where δ is the Dirac delta function. Equation 3.11 is numerically solved using the RKF-

45 technique to compute the junction’s instantaneous voltage. The noise current, in is

implemented as a Gaussian distributed random variable with zero mean and variance

2Γ/ωC. A set of Γ values spanning from 0 to 1 are used to compute the I-V electrical

characteristic. Figure 3.11 shows the numerically computed I-V characteristics for the

Josephson junction with various Γ thermal noise values. The introduction of the thermal

noise current tapers the bottom end of the I-V characteristic curve.

Figure 3.11: I-V electrical characteristic for a Josephson junction with a Gaussian
distributed noise current in

3.3.3 Direct Current SQUID Numerical Simulation.

The DC SQUID is constructed using two Josephson junctions oriented symmetrically

about a superconducting ring. The RCSJ model is used to develop a circuit representation

for the numerical examination of the DC SQUID electrical operating characteristics. The

results are compared to the data figures from [16, 40]. A successful recreation of data

figures verifies the correct implementation of the numerical technique.
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The normalized equations that define the operating characteristics of the DC SQUID

are reproduced from Chapter 2, section 2.2.6.2, for convenience.

ibias

2
+ j = βC δ̈1 + δ̇1 + sin(δ1) + in

ibias

2
− j = βC δ̈2 + δ̇2 + sin(δ2) + in

δ2 − δ1 = 2π(φa +
1
2
βL j)

The Josephson junctions are assumed to have negligible capacitance, βC = 0, reducing the

equation describing the electrical operating characteristics for the DC SQUID to a first

order ODE, given by the IVP,

(IVP)



ibias
2 + j = δ̇1 + sin(δ1) + in (DE)

ibias
2 − j = δ̇2 + sin(δ2) + in (DE)

δ2 − δ1 = 2π(φa + 1
2βL j) (Phase Relation)

t0 = 0 (IC)

d0 = 0 (IC)

(3.24)

The IVP for the DC SQUID is a two dimensional ODE consisting of the two variable

parameters δ1 and δ2. The value of the modulation parameter βL determines whether the

dimensionality of the DC SQUID IVP can be reduced or remain as a two-dimensional

ODE.

3.3.3.1 Dimensionality Reduction with βL = 0.

The condition βL = 0 reduces the DC SQUID IVP given in Equation 3.24 as a one-

dimensional ODE. The DC SQUID phase relationship for βL = 0 is reduced into,

δ2 − δ1 = 2πφa (3.25)

The phase difference for the second Josephson junction, δ2, is solved for and given by,

δ2 = δ1 + 2πφa (3.26)
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The circulating current passing through the second Josephson junction is solved for as,

j =
ibias

2
− δ̇2 − sin δ2 + in (3.27)

Equation 3.26 is substituted into Equation 3.27 to produce,

j =
ibias

2
− δ̇1 − sin δ1 + 2πφa + in (3.28)

A relationship between δ1 and δ2 is found by taking the time-derivative of Equation

3.26 to produce δ̇1 = δ̇2, and is applied to Equation 3.28 to produce,

j =
ibias

2
− δ̇1 − sin δ1 + 2πφa + in (3.29)

Equation 3.29 is substituted into equation 3.24 to produce,

ibias − δ̇1 − sin δ1 + 2πφa + in = δ̇1 + sin δ1 + in (3.30)

Equation 3.30 is reduced to the form,

2δ̇1 = ibias − 2 sin δ1 + 2in (3.31)

Equation 3.31 is divided by 2 to formulate the final expression, given as

δ̇1 =
ibias

2
− sin δ1 + in (3.32)

Equation 3.32 is a one dimensional ODE equation that describes the electrical characteristic

of the DC SQUID for βL = 0. The RKF-45 method is used to produce a solution for

Equation 3.32 for the noise-free case in = 0.

3.3.3.2 Noise-free Numerical Simulation with βL = 0.

The noise-free condition is simulated by setting the noise current to zero, in = 0. The

solution to the one dimensional ODE given by Equation 3.32 is computed using the RKF-

45 ODE solver. The I-V electrical operating characteristics are produced with a set of bias

current values ranging from -3 to 3 for comparison with the data figures presented in [16]
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at the end of this section. Figure 3.12 shows the I-V electrical operating characteristic for

the DC SQUID over the range of applied magnetic flux values 0, 0.1, 0.2, 0.3, 0.4, and 0.5.

The transfer function shows the time-averaged voltage as a function of the applied

magnetic flux and is shown in Figure 3.13. The transfer function is computed using

normalized bias currents 1.9, 2.0, and 2.1 to show the time-averaged voltage for the bias

currents of 1.9, 2.0, and 2.1. A small zero time-averaged voltage region is shown at a bias

current of 1.9. This zero voltage region spans 0.1φa and does not provide information for

applied magnetic flux values within the 0 to 0.1 range. The bias current of 2.0 and 2.1

provides a time-averaged voltage response for all values of the applied magnetic flux. The

transfer function for the bias current of 2.0 and 2.1 have different slopes in the flux range

0 to 0.5. The slope of the transfer function is a measurable figure of merit for the DC

SQUID, and contributes to the magnetic sensitivity of the entire device [16]. The magnetic

sensitivity is maximized by maximizing the transfer function slope. The bias current of 2.0

provides the greatest amount of slope with a voltage response for all applied magnetic flux

values.

A three dimensional surface plot of the transfer function is shown in Figure 3.14 and

visually shows the relationship between the transfer function, normalized bias current, and

the normalized applied magnetic flux. The flat regions depict a zero time-averaged voltage

across the DC SQUID. The zero voltage response is avoided because no information is

provided for an applied magnetic flux. A numerical derivative of the transfer function is

computed with respect to applied magnetic flux and is shown in Figure 3.15 as a surface

plot. Maximum slope occurs at a bias current of 1.5, however this bias current value is

un-useable because it contains zero-voltage response. The bias current of 2.0 provides the

greatest amount of slope and has a voltage response for all applied magnetic flux values,

thus this value is the minimum bias current value to be used for the DC SQUID.
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Figure 3.12: DC SQUID noise-free I-V electrical characteristic with the modulation
parameter βL = 0 at applied flux values 0, 0.1, 0.2, 0.3, 0.4, and 0.5

Figure 3.13: DC SQUID noise-free transfer function at bias currents 1.9, 2.0, and 2.1 over
a span of applied flux values spanning -1 to 1 with the modulation parameter βL = 0. There
is a null voltage region for a 1.9 bias current, maximum slope and peak-to-peak voltage for
a 2.0 bias current, and reduced slope and peak-to-peak voltage for a 2.1 bias current.

44



www.manaraa.com

Figure 3.14: Surface plot of the DC SQUID noise-free transfer function with the
modulation parameter βL = 0. The flat regions depict zero voltage development across
the DC SQUID and are avoided for operation.

Figure 3.15: Surface plot of the transfer function derivative ∂〈v〉 showing the regions of
maximum slope with the modulation parameter βL = 0. The maximum slope occurs around
a bias current value of 1.5 however this bias current value is un-usable because it contains
a null voltage region.
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3.3.3.3 Noise-free Numerical Simulation with βL > 0.

Non-zero values of the modulation parameter βL requires a different numerical

approach. The numerical computation for the two dimensional ODE model equation

requires all of the unknown parameters δ1, δ2, and j to be stepped through sequentially

during the solution computation. The I-V electrical operating characteristic is produced

with a set of bias current values ranging from -3 to 3 for comparison with the data figures

presented in [16] at the end of this section. Figure 3.16 shows the I-V electrical operating

characteristic for the DC SQUID over the range of applied magnetic flux values 0, 0.1, 0.2,

0.3, 0.4, and 0.5.

Figure 3.17 shows the transfer function for βL = 1. The transfer function is computed

using normalized bias currents 1.9, 2.0, and 2.1 to show the time-averaged voltage at the

1.9, 2.0, and 2.1 bias current values. A small zero time-averaged voltage region is shown

at a bias current of 1.9. This zero voltage region spans 0.1φa and is does not provide

information for applied magnetic flux values within the 0 to 0.1 range. The bias current

of 2.0 and 2.1 provide a time-averaged voltage response for all values of applied magnetic

flux. The bias currents for 2.0 and 2.1 produce transfer functions with different slope levels,

with the bias current of 2.0 providing the largest slope level. The magnetic sensitivity of

the DC SQUID is maximized by maximizing the transfer function slope.

Figure 3.18 shows the transfer function as a three dimensional surface plot. The flat

regions depict a zero time-averaged voltage across the DC SQUID and are avoided because

no information is provided for an applied magnetic flux. The modulation parameter βL = 1

increases the amount of zero voltage response as seen from the expansion of the flat regions

found in the β = 0 transfer function surface plot, Figure 3.14. A numerical derivative of

the transfer function is computed with respect to the applied magnetic flux and is shown

in Figure 3.19. Maximum slope occurs for a bias current of 1.5, however this bias current

value is un-useable because it contains zero-voltage response. The bias current of 2.0
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provides the greatest amount of slope and has a voltage response for all applied magnetic

flux values.

Figure 3.16: DC SQUID noise-free I-V electrical characteristic with the modulation
parameter βL = 1 at applied flux values 0, 0.1, 0.2, 0.3, 0.4, and 0.5
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Figure 3.17: DC SQUID noise-free transfer function at bias currents 1.9, 2.0, and 2.1 over
a span of applied flux values spanning -1 to 1 with the modulation parameter βL = 1. There
is a null voltage region for a 1.9 bias current, maximum slope and peak-to-peak voltage for
a 2.0 bias current, and reduced slope and peak-to-peak voltage for a 2.1 bias current.

Figure 3.18: Surface plot of the DC SQUID noise-free transfer function with the
modulation parameter βL = 1. The flat regions depict zero voltage development across
the DC SQUID and are avoided for operation.
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Figure 3.19: Surface plot of the transfer function derivative ∂〈v〉 showing the regions of
maximum slope with the modulation parameter βL = 1. The maximum slope occurs around
a bias current value of 1.5 however this bias current value is un-usable because it contains
a null voltage region.
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3.3.3.4 Thermal Noise Introduction.

The thermal noise current flowing in the junction is modeled as a current source

with a noise spectral density of S i = 2Γ. The thermal noise was seen to round the I-V

characteristic curve for the Josephson junction and a similar result is expected for the DC

SQUID. The I-V characteristics for the DC SQUID in the presence of thermal noise are

shown in Figure 3.20. The I-V characteristic is computed with a noise power Γ = 0.05 over

a range of bias currents and applied flux values to match the simulation conditions from

[16] so that a comparison can be performed, shown at the end of the section.

Figure 3.20: DC SQUID I-V electrical characteristics with thermal noise Γ = 0.05 using a
modulation parameter of βL = 1 at applied flux values 0, 0.1, 0.2, 0.3, 0.4, and 0.5.

The thermal noise slightly rounds the I-V characteristic at voltage values less than

0.25, in a result similar for the Josephson junction thermal noise simulations. Figure 3.21

shows the computed transfer function for the DC SQUID in the presence of thermal noise

with a noise power Γ = 0.05. The transfer function is computed using a range of bias
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current ∈ {1.5 . . . 2.9} to match the simulation conditions from [16] so that a comparison

can be performed, shown at the end of the section.

Figure 3.21: DC SQUID transfer function with thermal noise Γ = 0.05 using a modulation
parameter of βL = 1.

Figure 3.22 shows the surface plot of the transfer function, providing a visual

representation showing the relationship of the transfer function with the bias current

and applied magnetic flux values. Voltage fluctuations seen in the transfer function are

caused by the addition of a thermal noise current. These voltage fluctuations are small in

comparison to the peak to peak transfer function voltage response, as seen by the similar

surface plot shapes for the transfer function contained in Figures 3.22 and 3.18.
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Figure 3.22: Surface plot of the DC SQUID transfer function with thermal noise Γ = 0.05.
The flat regions depict zero voltage development across the DC SQUID.

3.3.4 Resistor-Capacitor-Shunted-Junction Model Implementation.

The screening parameter βL contributes to two separate modeling equations for the

DC SQUID, one for the case (βL = 0) and the other for the case (βL > 0). The value

0.04 is discovered to be the threshold driving which equation set is used for computing the

numerical solution. βL values less than 0.04 use the (βL = 0) equation set, and values greater

than 0.04 use the (βL > 0) equation set. Solutions computed using the (βL = 0) equation

set with a βL greater than 0.04 are inaccurate and unusable; also solutions computed using

the (βL > 0) equation set with a βL less than 0.04 are inaccurate and unusable

3.3.5 Resistor-Capacitor-Shunted-Junction Model Verification.

The RKF-45 numerical solutions are compared to the data from [16] to check the

computed solutions using the RKF-45 numerical method.
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The comparison between the numerically computed noise-free I-V characteristics

shown in Figure 3.24 and Figure 3.25 visually matche well with the noise-free I-V

characteristic shown in Figure 3.23, taken from the data source [16]. The numerically

computed noise-free transfer function shown in Figure 3.27 is compared with the noise-

free transfer function from [16], shown as Figure 3.26, with the comparison showing the

data matches, however a difference of 0.2 is seen between the noise-free transfer function

data sets. This error is relatively small and is seen to scale all values of the transfer function,

so it can be compensated with a scaling factor of 1.2. The thermal noise I-V characteristic is

compared between the numerically produced data, shown in Figure 3.30 and the data from

the source [16], shown as Figure 3.28. The thermal noise I-V characteristic data matches

well for voltage values greater than 0.25, although the data sets differ for voltage values

less than 0.25. Figure 3.28 shows that the data source I-V curve is rounded for voltage

values less than 0.25, but this curvature is not well shown in the numerically produced

thermal noise I-V characteristic in Figure 3.30. The thermal noise transfer function for

numerically produced data in Figure 3.31 is compared with the data source transfer function

in Figure 3.29, and the data values match well, however the waveform curvatures are

slightly different. The transfer function in Figure 3.29 shows a smooth and curved transfer

function produced by thermal noise. The transfer function for Figure 3.31 does not show

the smoothly curved transfer function, but instead exhibits sharp voltage transitions. The

transfer function data produced using RKF-45 numerical computation is still usable and

the differences seen in comparison with the data source figures are minor. In conclusion,

the RKF-45 produced solutions match the data figures contained in the data source [16],

showing the RKF-45 method provides acceptable solutions.
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Figure 3.23: Fig. 2.8a and Fig. 2.8b taken from [16] for comparison with RKF-45
numerically produced I-V characteristic curves. Current voltage characteristics of the dc
SQUIDs for βL=0.01, 1. Applied flux is increased from 0 (solid line) to Φ0/2 (short dashed
line) in steps of 0.1Φ0.

Figure 3.24: RKF-45 produced current
voltage characteristics of the dc SQUID
for βL=0. The applied flux is increased
from 0 to Φ0/2 in steps of 0.1Φ0. The I-
V characteristic visually matches the data
presented in Figure 3.23

Figure 3.25: RKF-45 produced current
voltage characteristics of the dc SQUID
for βL=1. The applied flux is increased
from 0 to Φ0/2 in steps of 0.1Φ0. The I-
V characteristic visually matches the data
presented in Figure 3.23
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Figure 3.26: Fig. 2.9 taken from [16] for comparison with RKF-45 numerically produced
transfer function. dc SQUID modulation V(Φa) for several values of normalized bias
current i from 1.5 to 1.9 calculated for strongly overdamped junctions.

Figure 3.27: RKF-45 produced transfer function 〈U(Φa)〉 for normalized bias current values
from 1.5 to 1.9 with βL = 1. The transfer function visually matches the data presented in
Figure 3.26 although there is a slight discrepancy with the numerical values not matching,
exhibiting an error of 0̃.2.
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Figure 3.28: Fig. 2.13 taken from [16]
for comparison with RKF-45 produced I-V
characteristic with thermal noise. Current-
voltage characteristics of dc SQUID with
strongly overdamped junctions in the pres-
ence of thermal noise (Γ = 0.05).

Figure 3.29: Fig. 2.14 taken from [16] for
comparison with RKF-45 produced transfer
function with thermal noise. Voltage mod-
ulation V(Φa) of dc SQUID for strongly
dmaped junctions, in the presence of ther-
mal noise for several values of bias current
from 1.5 to 2.9.

Figure 3.30: RKF-45 produced I-V char-
acteristic curve with the presence of ther-
mal noise Γ = 0.05 for βL = 1. The I-V
curve visually matches the data presented in
Figure 3.28 for voltage values greater than
0.25. The I-V curve closely match for volt-
age values less than 0.25, however Figure
3.28 shows that noise rounds this portion of
the I-V curve.

Figure 3.31: RKF-45 produced transfer
function with the presence of themal noise
Γ = 0.05 for βL = 1. The transfer
function closely matches the data presented
in Figure 3.29, exhibiting an error ≤ 0.1.
The edges of the transfer function from 3.29
are smoothed compared with the RKF-45
produced transfer function.
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IV. Results

Chapter IV presents HF numerical simulations using the DC SQUID circuit model. A

HF magnetic flux signal is applied to the DC SQUID circuit model to produce a DC

SQUID voltage response. The DC SQUID develops a voltage in response to the applied

HF magnetic flux signal, but it is necessary to compute a fast time-average to produce the

final voltage waveform. The voltage samples produced with fast time-averaging shows a

relationship with the Nyquist-Shannon sampling theorem. Simulations are performed for

noise-free, junction thermal noise, and AWGN conditions to characterize the response of

the DC SQUID for noise-free and noisy conditions. The HF sensitivity of the DC SQUID

is examined using the Friis transmission equation and optical responsitivity metrics.

4.1 DC SQUID Electrical Parameters

The electrical parameters defining the DC SQUID are found using the process outlined

in Figure 4.1. The DC SQUID inductance is derived from the physical architecture of

the superconducting ring, and the capacitance of the Josephson junction is derived from

the cross sectional area of the barrier architecture. Lithographic processes limit device

Figure 4.1: Design process for the DC SQUID
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fabrication for achieving small loop structures and small Josephson junction barrier cross

sectional areas. The inductance and capacitance for the DC SQUID architecture are used to

compute the remaining DC SQUID parameters. The critical current IC is computed using,

IC =
βLφ0

2L

∣∣∣∣
βL=1

=
φ0

2L
(4.1)

with the condition βL = 1 for maximum energy resolution [40]. The shunt resistance,

R, is computed using the parameters IC, C, with the condition βC ≤ 0.7 to avoid I-V

characteristic hysteresis. The shunt resistance is found using,

βC =
2π
φ0

ICR2C
∣∣∣∣
IC=

φ0
2L

≤ 0.7 (4.2)

R ≤

√
0.7L
πC

(4.3)

The electrical parameters for a representative low temperature DC SQUID are contained in

Table 4.1 using an inductance of 1 nH and a capacitance of 1 pF.

Table 4.1: DC SQUID Design Parameters

Temperature T Inductance L Capacitance C Critical Current IC Max Resistance

4.7K 1nH 1pF 1µA 15Ω

The βC condition is satisfied for resistance values ranging from 0 to 15 Ω, so a

resistance will need to be selected. Shunt resistance effects the peak voltage response and

the characteristic frequency ωC of the DC SQUID, and contains the trade space between

voltage response and the oscillation frequency of the DC SQUID instantaneous voltage.

Maximizing the voltage response will maximize the magnetic flux sensitivity, however this

increases the oscillation frequencyωC; ωC must be low enough to allow electronic hardware

to meet Nyquist sampling requirements. Figure 4.2 shows the surface plot of the voltage

transfer function as a function of resistance.
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Figure 4.2: Surface plot showing the transfer function for values of resistance from 0 to 15

Ω. Increasing resistance increases the magnitude of the transfer function and corresponding

the voltage response, however the oscillation frequency ωC is also increased.

The transfer function is shown to be maximum at R = 15Ω, although this produces

an oscillation frequency of 45.6 GHz and far exceeds the fastest analog to digital converter

available. Reducing the resistance to R = 0.01Ω produces an oscillation frequency of 3

MHz, however this minimizes the transfer function. The resistance is chosen to be R = 10Ω

for this simulation to compromise between voltage response and oscillation frequency. The

Stewart-McCumber damping parameter βC and the characteristic frequency ωC for R = 10

Ω are shown in Table 4.2.

Table 4.2: DC SQUID Circuit Parameters

Inductance L Capacitance C Resistance R βL βC ωC(τ)

1nH 1pF 10 Ω 1 0.3142 31.4 GHz
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4.2 Application of a Time-Varying Magnetic Flux Signal

A time-varying magnetic flux signal ϕ(t) of magnitude |ϕ| and frequency f is applied

using the DC SQUID circuit model to simulate the reception of HF EM energy. The applied

magnetic flux signal is,

ϕ(t) = |ϕ| sin(2π f t) webers (Wb) (4.4)

with magnitude |ϕ|, frequency f , and time t. The applied magnetic flux signal is normalized

using the time relationship τ = ωCt for integration with the normalized DC SQUID model

equations. With the τ relationship, the magnetic flux signal becomes

ϕ(τ) = |ϕ| sin(2π f
τ

ωC
) = |ϕ| sin(

ω

ωC
τ) (4.5)

The DC SQUID voltage response is analyzed over the HF band using Equation 4.5.

4.2.1 Noise-free Numerical Simulation.

The DC SQUID voltage response is first analyzed for the noise-free condition for

frequencies 3-30 MHz. A magnetic flux signal with amplitude |ϕ| = 0.25φ0 and a frequency

of f = 3 MHz in input into the DC SQUID model to produce the DC SQUID voltage

response. The magnitude |ϕ| = 0.25φ0 was chosen to remain inside the useful range

for the DC SQUID transfer function 0 − 0.5φ0, so that flux aliasing is avoided. The

applied magnetic flux signal is shown in Figure 4.3. An instantaneous voltage v(t) develops

across the DC SQUID for the 3 MHz applied signal and is shown in Figure 4.4. The

instantaneous DC SQUID voltage v(t) that develops exhibits frequency and amplitude

modulation characteristics shown by the frequency oscillations and the amplitude envelope

for v(t). Frequency modulation is caused by the amount of magnetic flux sensed by the DC

SQUID and the amplitude modulation is caused by the applied signal amplitude envelope.
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Figure 4.3: Applied magnetic flux signal ϕ(t) with f = 3 MHz and |ϕ| = 0.25φ0 Wb.

Figure 4.4: DC SQUID instantaneous voltage v(t) for an applied magnetic flux signal with
f=3 MHz and |ϕ| = 0.25φ0 Wb. Frequency modulation characteristics are shown by the
frequency oscillations within v(t) caused by the changing applied magnetic flux amplitude.
Amplitude modulation characteristics are shown by the amplitude envelop of v(t) and
caused by the amplitude envelop of the applied magnetic flux signal ϕ(t).

61



www.manaraa.com

A fast time-average of the instantaneous DC SQUID voltage is computed with,

〈v〉
∣∣∣∣
∆t

=
1
∆t

∑
∆t

v(t) (4.6)

for instantaneous DC SQUID voltage v(t) over the time interval ∆t. The time interval ∆t

is chosen to meet the minimum Nyquist-Shannon sampling interval such that the sampling

time interval must be less than half of the period of one cycle. For 3 MHz, the minimum

time interval is ∆t = 0.167µS . The fast time-averaging produces an output voltage

waveform with sample points appearing at 4.7µV with a spacing of 0.167 µS as shown

in Figure 4.5.

Figure 4.5: Voltage samples produced with a fast time-average of v(t) for a time interval
∆t = 0.167µS , producing 2 sample per cycle. A bias offset of 4.7µV is removed to shift
the voltage samples to zero, allowing for an accurate sample representation of the 3 MHz
magnetic flux signal ϕ(t).

Fast time averaging produces a voltage signal with samples appearing at the time

locations corresponding with a sampled ϕ(t) using a ∆t = 0.167µS sampling period,

indicating that fast time averaging produces sample points of the applied magnetic flux

signal at a 4.7µV bias offset. The bias offset is removed to shift the voltage samples to
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zero for an accurate sampling representation of the 3 MHz applied magnetic flux signal.

The last data point in the fast time-averaged voltage waveform is an erroneous result of an

incomplete time-average over the time interval ∆t. The time interval is reduced to 27.8 nS

to produce 12 voltage samples per cycle to allow the fast time-averaged waveform to be

analyzed, shown in Figure 4.6.

Figure 4.6: Voltage samples produced with a fast time-average of v(t) for a time interval
∆t = 27.8 nS, producing 12 voltage samples per cycle. A bias offset of 4.7µV is removed
to shift the voltage samples to zero, allowing for an accurate sample representation of the
3 MHz magnetic flux signal ϕ(t). The peak-to-peak voltage is 4.1µV .

The 12 sample per cycle voltage waveform contains a 2.3µV bias that is removed to

shift the sample points to zero, allowing for an accurate sampling representation of the 3

MHz applied magnetic flux signal. A periodicity equal to 1
2 of the applied magnetic flux

signal is seen in the fast time averaged voltage waveform. The fast time averaged voltage

waveform is seen to not contain negative voltage values, indicating that the DC SQUID

operates as a voltage rectifier, since the negative cycles become positive. A peak to peak

voltage of 4.1µV is observed, and also a null voltage region develops between each half

cycle, however, the periodicity is still maintained.
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A magnetic flux signal with f = 15 MHz is applied to the DC SQUID model to

examine the DC SQUID voltage response. The applied magnetic flux signal is shown in

Figure 4.7. The DC SQUID produces a voltage v(t) in response to the f = 15 MHz applied

magnetic flux signal and is shown in Figure 4.8.

Figure 4.7: Applied magnetic flux signal ϕ(t) with |ϕ| = 0.25φ0 Wb and f = 15 MHz.

An instantaneous voltage v(t) develops across the DC SQUID for the 15 MHz

applied magnetic flux signal. The DC SQUID voltage v(t) exhibits the same frequency

and amplitude modulation characteristics previous observed for the DC SQUID voltage

response with an applied magnetic flux signal at f = 3 MHz.

A fast time-average is computed using ∆t = 33.3 nS to produce 2 voltage samples

per cycle at 15 MHz. The fast time averaged voltage samples appear at 4.7µV with a

spacing of 33.3 nS as shown in Figure 4.9. The voltage samples appear at the time locations

corresponding with a sampled ϕ(t) using a ∆t = 33.3 nS, indicating that fast time averaging

produces voltage samples of the 15 MHz applied magnetic flux signal, with a 4.7µV bias

offset.
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Figure 4.8: DC SQUID instantaneous voltage with f=15 MHz and |ϕ| = 0.25φ0 Wb
applied magnetic flux. Frequency modulation characteristics are shown by the frequency
oscillations within v(t) caused by the changing applied magnetic flux amplitude. Amplitude
modulation characteristics are shown by the amplitude envelop of v(t) and caused by the
amplitude envelop of the applied magnetic flux signal ϕ.

The bias offset is removed to shift the voltage samples to zero for an accurate sampling

representation of the 15 MHz applied magnetic flux signal. The last data point in the fast

time-averaged voltage waveform is an erroneous result of an incomplete time-average over

the time interval ∆t. The time interval is reduced to 5.6 nS to produce 12 voltage samples

per cycle, allowing analysis of the fast time-averaged voltage waveform for an increased

sample resolution, shown in Figure 4.10. The 12 sample per cycle voltage waveform

contains a 2.2µV bias and is removed to shift the sample points to zero, allowing for an

accurate sampling representation of the 15 MHz applied magnetic flux signal. A periodicity

equal to 1
2 of the applied magnetic flux signal is seen in the fast time averaged voltage

waveform. The fast time averaged voltage waveform exhibits the voltage rectification

response previously observed. A peak to peak voltage of 4.3µV develops, along with a

null voltage region developing between each half cycle, however, the periodicity is still

maintained.
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Figure 4.9: Voltage samples produced with a fast time-average of v(t) for a time interval
∆t = 33.3 nS, producing 12 voltage samples per cycle. A bias offset of 4.7µV is removed
to shift the voltage samples to zero, allowing for an accurate sample representation of the
15 MHz magnetic flux signal ϕ(t).

Figure 4.10: Voltage samples produced with a fast time-average of v(t) for a time interval
∆t = 5.6 nS, producing 12 voltage samples per cycle. A bias offset of 2.2µV is removed to
shift the voltage samples to zero, allowing for an accurate sample representation of the 15
MHz magnetic flux signal ϕ(t). The peak-to-peak voltage is 4.3µV .
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A magnetic flux signal with f = 30 MHz is applied to the DC SQUID model to

examine the DC SQUID voltage response. The applied magnetic flux signal is shown in

Figure 4.11. The DC SQUID produces a voltage v(t) for the f = 30 MHz applied magnetic

flux signal and is shown in Figure 4.12.

Figure 4.11: Applied magnetic flux signal with f=30 MHz and |ϕ| = 0.25φ0 Wb.

The instantaneous DC SQUID voltage v(t) developing for an applied magnetic

flux signal at f = 30 MHz exhibits the same frequency and amplitude modulation

characteristics previous observed for the DC SQUID voltage response with an applied

magnetic flux signal at f = 3 and 15 MHz.

A fast time-average is computed using ∆t = 16.7 nS to produce 2 voltage samples per

cycle. The fast time averaged voltage samples appear at 4.7µV with a spacing of 16.7 nS, as

shown in Figure 4.9. The voltage samples appear at the time locations corresponding with

a sampled ϕ(t) using a ∆t = 16.7 nS sampling period, indicating that fast time averaging

produces voltage samples of the 30 MHz applied magnetic flux signal with a 4.7µV bias

offset.
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Figure 4.12: DC SQUID instantaneous voltage with f=30 MHz and |ϕ| = 0.25φ0 Wb
applied magnetic flux. Frequency modulation characteristics are shown by the frequency
oscillations within v(t) caused by the changing applied magnetic flux amplitude. Amplitude
modulation characteristics are shown by the amplitude envelop of v(t) and caused by the
amplitude envelop of the applied magnetic flux signal ϕ(t).

The bias offset is removed to shift the voltage samples to zero for an accurate sampling

representation of the 30 MHz applied magnetic flux signal. The last data point in the fast

time-averaged voltage waveform is an erroneous result of an incomplete time-average over

the time interval ∆t. The time interval is reduced to 2.7 nS to produce 12 voltage samples

per cycle, allowing analysis of fast time-averaged waveform with an increased sampling

resolution, shown in Figure 4.14. The 12 sample per cycle voltage waveform contains

a 2.3µV bias and is removed to shift the sample points to zero, allowing for an accurate

sampling representation of the 30 MHz applied magnetic flux signal. A periodicity equal

to 1
2 of the applied magnetic flux signal is seen in the fast time averaged voltage waveform.

The fast time averaged voltage waveform exhibits the voltage rectification response seen

previously. A peak to peak voltage of 4.1µV is observed, and also a null voltage region is

seen to develop between every half cycle, however, the periodicity is still maintained.
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Figure 4.13: Voltage samples produced with a fast time-average of v(t) for a time interval
∆t = 16.7 nS, producing 2 voltage samples per cycle for a 30 MHz signal. A bias offset
of 4.7µV is removed to shift the voltage samples to zero, allowing for an accurate sample
representation for the 30 MHz magnetic flux signal.

Figure 4.14: Voltage samples produced with a fast time-average of v(t) for a time interval
∆t = 2.7 nS, producing 12 voltage samples per cycle. A bias offset of 2.3µV is removed to
shift the voltage samples to zero, allowing for an accurate sample representation of the 30
MHz magnetic flux signal. The peak-to-peak voltage is 4.1µV .
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The DC SQUID voltage response over the HF band is shown in Figure 4.15. The peak

to peak voltage is computed with the fast time averaged voltage waveform produced at 12

voltage samples per cycle. Frequencies from the HF band are used to compute the peak

to peak voltage response of the DC SQUID. The resulting DC SQUID voltage response

shows a stable trend across the HF band. A resonance not appearing within the HF band is

an indication that this device has large bandwidth.

Figure 4.15: Peak to peak voltage response using the 12 voltage sample per cycle for the
DC SQUID over the HF band. The peak to peak voltage remains constant over the HF band
indicating the device is wide bandwidth.

4.2.2 Thermal Noise Numerical Simulation.

Thermal noise is introduced by adding an additional current source into the RCSJ

circuit representation. The DC SQUID electrical parameters from Table 4.2 and Equation

3.16 are used to compute the noise current spectral density, found to be S I( f ) = 0.76 A/Hz.

The noise current is modeled in the time domain as an AWGN random process with a noise

power of 0.76 A over a bandwidth of 1 Hz. The DC SQUID voltage is computed with the

random AWGN current. A time-varying magnetic flux signal with amplitude |ϕ| = 0.25φ0
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and frequency f = 3 MHz is input into the model to produce the DC SQUID instantaneous

voltage signal. The applied magnetic flux signal is shown in Figure 4.16(a). Noise is

observed in the resulting instantaneous DC SQUID voltage v(t) because of the additional

thermal noise current, shown in Figure 4.16(b).

A fast time-average using a time interval of ∆t = 0.167µS produces voltage samples

at 6.3µV spaced every 0.167µS , representing a 2 sample per cycle sampling rate of the

applied magnetic flux signal is shown in Figure 4.16(c). The 6.3µV bias offset is removed

to shift the voltage samples to zero, showing that the voltage samples accurately represent

the applied magnetic flux signal at the minimum Nyquist sampling rate.

A fast time-average using a time interval of ∆t = 27.8nS produces voltage samples

spaced every 27.8nS, representing a 12 sample per cycle sampling rate of the applied

magnetic flux signal is shown in Figure 4.17. A 5.3µV bias offset voltage is removed,

shifting the voltage samples to zero. Periodicity is observed and remains equal to 1
2 the

period of the applied magnetic flux signal. The voltage rectification response and the

development of the null voltage region characteristics observed in the noise-free case still

remain and are uninfluenced by the addition of thermal noise. The peak to peak voltage

is 1.8µV is shown in the fast time average produced voltage waveform as shown in Figure

4.17.
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Figure 4.16: (a) Applied magnetic flux signal with f = 3 MHz and |ϕ| = 0.25φ0 Wb. (b)
DC SQUID instantaneous voltage v(t) develops in response to the applied magnetic flux
signal. (c) Voltage samples with 6.3µV bias produced with a fast time-average of v(t) for
a time interval ∆t = 0.167µS . 6.3µV bias is removed to shift the voltage samples to zero,
allowing for an accurate sample representation for the 3 MHz applied magnetic flux signal
ϕ(t).
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Figure 4.17: DC SQUID instantaneous voltage with f=3 MHz and |ϕ| = 0.25φ0 Wb applied
magnetic flux. DC SQUID time-average is performed at 12 samples per cycle.

The remaining frequencies simulated for the HF band show the general characteristic

of voltage rectification and the development of the null voltage region at the end of each

cycle reconstruction. Additional simulations for selected frequency values 15 MHz and 30

MHz can be found in Appendix A. The DC SQUID voltage response with thermal noise

over the HF band is shown in Figure 4.18. The peak to peak voltage is computed with fast

time averaging at a time interval producing 12 voltage samples per cycle to construct the

data shown in Figure 4.18. The frequencies from the HF band are used to compute the

peak to peak voltage Vpp response of the DC SQUID. A stable peak to peak voltage trend

is shown from the computed Vpp data. A resonance not appearing within the HF band is an

indication that the DC SQUID has a large bandwidth. The peak to peak voltage response

is reduced by half in comparison with the peak to peak voltage response from the noise

free simulations, leading to the conclusion that the addition of the thermal noise current

dramatically reduces the DC SQUID voltage response.
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Figure 4.18: Peak to peak voltage response using the 12 voltage sample per cycle for the
DC SQUID over the HF band. The peak to peak voltage remains constant over the HF band
indicating the device is wide bandwidth.

4.2.3 Applied Magnetic Flux with AWGN Numerical Simulation.

The DC SQUID voltage response is examined for the introduction of 10dB of AWGN

added to the applied magnetic flux signal. DC SQUID thermal noise with noise power

of 0.76 A over a bandwidth of 1 Hz remains present for the simulations. A time-varying

magnetic flux signal with amplitude |ϕ| = 0.25φ0 and frequency f = 3 MHz is input into the

model to produce the DC SQUID instantaneous voltage signal v(t). The applied magnetic

flux signal is shown in Figure 4.19(a). The resulting instantaneous DC SQUID voltage v(t)

contains noise because of the thermal noise current, shown in Figure 4.19(b). The voltage

amplitude in v(t) did not increase with the addition of extra noise.

A fast time-average using a time interval of ∆t = 0.167µS produces voltage samples

at 6.1µV spaced every 0.167µS , representing a 2 sample per cycle sampling rate of the

applied magnetic flux signal is shown in Figure 4.19(c). The 6.1µV bias offset is removed

to shift the voltage samples to zero, showing that the voltage samples accurately represent

the applied magnetic flux signal at the minimum Nyquist sampling rate.
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A fast time-average using a time interval of ∆t = 27.8nS produces voltage samples

spaced every 27.8nS, representing a 12 sample per cycle sampling rate of the applied

magnetic flux signal is shown in Figure 4.20. A 5µV bias offset voltage is removed,

shifting the voltage samples to zero. Periodicity is observed and remains equal to 1
2 the

period of the applied magnetic flux signal. Voltage rectification and the null voltage region

characteristics remain in the produced voltage samples. The peak to peak voltage is 2.2µV

seen in the voltage samples in Figure 4.20.

The DFT quantifies the spectral content contained within a waveform and is used to

perform a spectral analysis of the instantaneous DC SQUID voltage v(t), shown in Figure

4.21. The majority of the spectral content is shown to be contained within the 2-4 GHz

band and is unclear why this spectral content lies within this particular band. The remaining

spectral energy is nearly constant and represents the noise floor. The DFT is computed with

12 voltage sample per cycle waveform, and is shown in Figure 4.22. The main spectral

content is centered at 6 MHz, as expected because the waveform is seen to reduce the

period by 1
2 , increasing the frequency by 2.
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Figure 4.19: (a) Applied magnetic flux signal with f = 3 MHz. |ϕ| = 0.25φ0, and 10dB
additional noise. (b) DC SQUID instantaneous voltage v(t) with no increase in amplitude
resulting from the additional noise. (c) Voltage samples with 6.1µV bias produced with a
fast time-average of v(t) for a time interval ∆t = 0.167µS. 6.1µV bias is removed to shift
the voltage samples to zero, allowing for an accurate sample representation for the 3 MHz
applied magnetic flux signal.
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Figure 4.20: Voltage samples produced with a fast time-average of v(t) for a time interval
∆t = 27.8nS, producing 12 voltage samples per cycle. A bias offset of 6.1µV is removed to
shift the voltage samples to zero, allow for an accurate sample representation of the 3 MHz
magnetic flux signal ϕ(t). The peak to peak voltage is 2.2µV .

Figure 4.21: Spectral analysis for DC SQUID voltage v(t) produced with thermal and
additive noise is performed using the DFT, with a result showing the main spectral content
for v(t) lies within the 2-4 GHz band. The spectral content outside the 2-4 GHz band
represents the noise floor of the DC SQUID sensor.

77



www.manaraa.com

Figure 4.22: Spectral analysis using the DFT for the fast time-averaged voltage samples
produced at 12 samples per cycle, with a result showing the main spectral content is
centered at 6 MHz.

The remaining frequencies simulated for the HF band show the general characteristic

of voltage rectification and the development of the null voltage region at the end of each

cycle reconstruction. The additional AWGN does not increase the amplitude of DC SQUID

voltage v(t) with the developed voltage remaining very similar to the thermal noise case. A

DFT of the DC SQUID voltage shows the majority of the spectral content remains within

the 2-4 GHz band with no clear relationship for this particular band present. The main

spectral content for the 12 voltage samples per cycle waveforms are centered at twice the

frequency of the applied magnetic flux signal, because the voltage rectification causes the

resulting waveform period to be reduced by 1
2 , thus effectively increase the frequency by 2.

Additional simulation for the selected frequency values 15 MHz and 30 MHz can be found

in Appendix B.

The DC SQUID voltage response with thermal noise and additional AWGN over the

HF band is shown in Figure 4.23. The peak to peak voltage is computed with fast time

averaging at a time interval producing 12 voltage samples per cycle to construct the data
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shown in Figure 4.18. The frequencies from the HF band are used to compute the peak

to peak voltage response Vpp of the DC SQUID. A stable peak to peak voltage trend is

shown from the computed Vpp data. A resonance not appearing within the HF band is an

indication that the DC SQUID has a large bandwidth. The peak to peak voltage response is

reduced by half in comparison with the peak to peak voltage response from the noise free

simulations, but remains similar to the thermal noise simulations, leading to the conclusion

that the addition of excess AWGN noise does not significantly change the DC SQUID

voltage response, indicating that the DC SQUID is largely immune to excess environmental

noise.

Figure 4.23: Peak to peak voltage response using the 12 voltage sample per cycle for the
DC SQUID over the HF band. The peak to peak voltage remains constant over the HF band
indicating the device is wide bandwidth.

A null voltage zone develops for the last time-interval of every half cycle. This null

voltage develops because of the transition between positive and negative cycles of the input

waveform. The DC SQUID bias current was increased to Ibias = 2.1IC in an attempt to

eliminate the null voltage zone, since a null voltage zone is observed in the surface plot for
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transfer function shown in Figure 3.18. The DC SQUID time-average voltage waveform

at 12 samples per cycle with an input signal of |ϕ| = 0.25φ0 and 3 MHz frequency is

shown in Figure 4.24. The null voltage zone is still present, eliminating the bias current

as the possible source. The modulation parameter was shown in Chapter 3 to influence

the development of the null voltage regions, as shown form Figures 3.14 and 3.18. The

modulation parameter is changed from the optimum value βL = 1 to βL = 0.5 to observe

any reduction in the development of the null voltage. The DC SQUID time-average voltage

waveform at 12 samples per cycle with an input signal of |ϕ| = 0.25φ0 and 3 Mhz frequency

is shown in Figure 4.25. The null voltage zone is still not reduced, indicating that the

modulation parameter does not contribute to the development of this null voltage zone.

Figure 4.24: DC SQUID bias current increased to Ibias = 2.1IC to observe development of
the null voltage zone occurring at the end of each reconstructed half cycle. Null voltage
zone remains present, leading to the conclusion that the bias current does not effect null
voltage development. The voltage samples are produced using a fast time-average of v(t) at
a time interval ∆t set to produce 12 voltage samples per cycle for an applied magnetic flux
signal ϕ(t) with amplitude |ϕ| = 0.25φ0 Wb and f = 3 MHz.
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Figure 4.25: Modulation parameter βL decreased from optimum value (βL = 1) to βL = 0.5
to observe development of the null voltage zone occurring at the end of each reconstructed
half cycle. Null voltage zone remains present, leading to the conclusion that βL does not
effect null voltage development. The voltage samples are produced using a fast time-
average of v(t) at a time interval ∆t set to produce 12 voltage samples per cycle for an
applied magnetic flux signal ϕ(t) with amplitude |ϕ| = 0.25φ0 Wb and f = 3 MHz.

The presence of the null voltage does not change the period of the produced time-

average waveform. The addition of thermal noise was shown to reduced the peak to

peak voltage value of the time-averaged waveform, and caused a slight expansion of the

waveforms curvature. The addition of AWGN to the input signal did not significantly

change the resulting time-averaged voltage waveform, compared to the thermal noise only

case. The waveform curvature is seen to expand with additional AWGN. The time-

averaged voltage values showed very little change because of the time-averaging of white

Gaussian noise. AWGN is zero mean, and by performing a time average, the presence of

noise is greatly reduced. Figure 4.26 shows a comparison between the noise free, thermal

noise, and additional AWGN produced time-average voltage waveforms at 12 sample per

cycle for 3 MHz. The top data figure presents the noise free case, the middle data figure

shows the thermal noise case, and the bottom data figure shows the 10dB SNR case.
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Figure 4.26: Comparison of noise-free, thermal noise, and thermal/additive signal noise fast
time-average voltage waveforms using a frequency f = 3 MHz, and magnitude |ϕ| = 0.25φ0

Wb. Fast time-averaging time interval ∆t is set to produce 12 voltage samples per cycle.

The DC SQUID’s voltage response shows general trends across the three cases, over

the frequencies simulated. A fast time-average over a time interval ∆t can be used to
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produce voltage samples of the applied magnetic flux signal. The Nyquist sampling

requirement applies in that the time interval ∆t used must be less than half of the period

of the applied magnetic flux signal. The voltage waveforms produced using fast time-

averaging contain a varying amount of voltage bias, and once removed, provides an

accurate, sampled version of the applied magnetic flux signal. However, the DC SQUID

and fast time averaging exhibit voltage rectification, as seen by the negative magnetic flux

signal cycles appearing as positive voltage values. The voltage rectification response can be

predicted by examining the DC SQUID transfer function. The transfer function shows that

negative flux values produce positive voltage values as shown in Figure 3.21. Also, a null

voltage develops at the end of every reconstructed half cycle. In an attempt to eliminate

null voltage development, the bias current was changed, and the modulation parameter βL

was changed from the optimum value, but no elimination or reduction was observed.

4.2.4 DC SQUID Limitations.

Examination of the normalized DC SQUID model equations from Chapter 3 shows

that the transfer function is periodic with respect to φ0, and show positive voltage

developing for negative applied static flux values. Voltage rectification shown by the

DC SQUID and fast time-averaging can be explained with an examination of the transfer

function. The fast oscillation frequency ωC of the DC SQUID is much greater than the

frequency of the applied magnetic flux signal, so small fast time average intervals for ∆t

can be used for sampling the applied magnetic flux signal. In other words, the applied

magnetic flux signal over a ∆t appears to be slowly varying to the DC SQUID, allowing for

a time-average over ∆t to be computed.

The usable flux region of the DC SQUID to shown to be 0 to 0.5φ0 as seen in the

transfer function from Figure 3.17. Exceeding the usable flux region will cause flux

aliasing, explained by the production of a single voltage value for multiple values of applied

flux. Figure 4.27 shows the result of exceeding the useable flux region. A magnetic flux
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signal with magnitude |ϕ| = 1φ0 and frequency 3 MHz is applied to the DC SQUID model

and the resulting 12 sample per cycle fast time-averaged waveform is shown in Figure 4.27.

Figure 4.27: Fast time-average voltage samples for applied magnetic flux with magnitude
|ϕ| = 1φ0 and f = 3 MHz. A time interval ∆t is set to produce 12 voltage samples per cycle.
Severe waveform distortion results from exceeded the usable flux range of the DC SQUID,
caused by aliasing of flux values.

The fast time-averaged produced waveform shows significant aliasing, appearing as

distortion, resulting from exceeding the usable flux range of the DC SQUID.

The usable flux region is shown to be curved seen in Figure 3.17, and leads to

distortion, especially at the extreme boundaries 0 and 0.5φ0. Distortion is demonstrated

with the application of a raised sinusoidal signal with amplitude |ϕ| = 0.25φ0(1 + sin( f t))

and frequency f = 3 Mhz. The applied magnetic flux signal is shown in Figure 4.28, and

Figure 4.29 shows the resulting 12 sample per cycle time averaged waveform.
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Figure 4.28: Applied raised sinusoidal magnetic flux signal ϕ = 0.25φ0(1 + sin( f t)) and
f = 3 MHz with 10dB of additional noise.

Figure 4.29: Fast time-average voltage samples produced at 12 samples per cycle for a
raised sinusoidal applied magnetic flux signal. The applied raised sinusoid exercises the
maximum limits of the usable flux range, demonstrating resulting distortion because a
curvature seen in the voltage transfer function from Figure 3.17 over the usable flux range.
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The fast time-average waveform shows that the upper and lower portions of the

sinusoidal signal are distorted because of the slightly curved voltage transfer function.

4.2.5 Application to Direction of Arrival Estimation.

A periodic waveform is produced by the DC SQUID and fast time-averaging, but more

importantly, the results show that the phase of the magnetic flux signal is preserved. The

preservation of phase is important because this allows the detection of phase differences

produced along the face of antenna array. If the phase of the incident signal is not preserved,

phase weighting cannot be applied to the voltage signals produced by the individual antenna

elements. The DC SQUID sensors can be arranged into an array to produce voltage signals

compatible with spatial filtering techniques used for AOA estimation.

4.3 High Frequency Reception

The DC SQUID receives HF energy as shown by circuit model using a time-varying

applied magnetic flux signal with frequency f. An output voltage develops in response to

the applied magnetic flux signal. A fast time-average is computed over time intervals of ∆t

to produce voltage samples representing the applied magnetic flux signal. Thermal noise

reduces the peak voltage produced by the fast time-averaging. This section presents the

HF reception characteristics for the DC SQUID. HF sensitivity is analyzed using the Friis

transmission equation and optical responsitivity is used to perfom a comparison with the

BDOT sensor. HF EM propagation is considered to be in a free space.

4.3.1 Received Power Sensitivity.

The Friis transmission equation computes the HF reception characteristics between

two antennas, relating the power density received to the power transmitted and is given by

[10], assuming an isotropic radiation pattern,

S =

√
Pt

4πR2 (4.7)
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where S is the power density (W/m2) at a range R (m) and Pt is the transmission power

(W).

A magnetic flux signal ϕ = 0.25φ0 sin( f t) is shown to have been captured with a single

DC SQUID and will be used for range computation. The smallest detectable magnetic

flux signal that the DC SQUID can capture contains power equivalent to the noise voltage

power, but was not simulated for this research effort. The magnetic flux intensity B is

computed using the captured magnetic flux signal ϕ. The expression for the magnetic flux

B passing through a loop is given by,

ϕ = |B||A| cos(θ) (4.8)

where ϕ is the magnetic flux (Wb), B is the magnitude of the magnetic flux intensity

(Wb/m2), |A| is the surface area of the superconducting loop (m2), and θ is the angle between

B and loop area normal vector. The maximal case θ = 0 is assumed for this computation.

The magnetic flux intensity B is found by dividing the magnetic flux ϕ by the loop

area of the DC SQUID ring, |B| = |ϕ|

|A| , but first the DC SQUID loop area must be found.

The DC SQUID loop area is found using the self-inductance equation for a loop, given

by [27],

L =
µ0N2A

h
(4.9)

where L is the inductance (H), µ0 is the permeability of free space (H/m), N is the number

of wire turns, A is the loop area (m2), and h is the total height of the wire turns (m). Solving

for loop area A produces,

A =
Lh
µ0N2 (4.10)

An 1 nH inductance was used for the DC SQUID design, and assuming a loop height of

1µm and a one-turn loop, the loop area is found to be A = 0.8nm2. The magnetic flux

intensity B is now found to be B = 1.3µWb/m2.
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The received power density S (W/m2) relates to magnetic flux intensity B (Wb/m2) as

[9],

|S | =
|B|2

µ2
0

η0 (4.11)

where µ0 is the permeability of free space (H/m) and η0 is the intrinsic impedance of free

space (Ω). Detection range is found by solving for range R with the Friis transmission

equation and given as,

Rdetect =

√
Pt

4πS
(4.12)

where Rdetect is the detection range, Pt is the transmission power (W), and S is the received

power density (W/m2). A single DC SQUID with an inductance of 1nH provides a detection

range of 0.9 meters for a transmission power of 1000 W. This range is not acceptable

for an airborne HF DF system, however SQUIDs are typically configured into an array,

significantly improving HF sensitivity. Figure 4.30 shows that increasing the loop area

allows smaller values of power density to be captured, leading to increased detection ranges

as shown in Figure 4.31. Acceptable detection ranges can be achieved by increasing the

loop area of the DC SQUID shown in Figure 4.31.
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Figure 4.30: DC SQUID HF detection range for a DC SQUID with inductance L=1nH and
loop height h = 1µm for a transmitted power of 1kW. Increasing the DC SQUID loop area
allows for reception of small power density values.

Figure 4.31: HF detection range for a DC SQUID with inductance L=1nH, loop height
h=1µm for a transmitted power of 1kW and 10kW. Detection range increases as the loop
area is increased, however DC SQUID inductance must be maintained because increasing
inductance reduces the energy resolution and voltage response of the DC SQUID.
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DC SQUID inductance is proportionally related to loop area, so increasing loop area

will increase inductance. DC SQUIDs are designed to minimize inductance, as outlined in

Figure 4.1, so that the energy resolution and voltage response are maximized, however there

are techniques to avoid increasing inductance. A series array containing DC SQUIDs can

be used to increase the capture area without increasing individual DC SQUID inductance

[16]. A series array of M DC SQUIDs have been shown to increase the voltage output by

M, with a noise increase of only
√

M [38]. The capture area of individual DC SQUIDs can

utilize a flux focusing design [16], by using wide traces for loop construction to force the

magnetic flux into the loop, since magnetic flux does not penetrate far into superconductor

materials. The flux arriving on the trace is forced inside the loop, therefore increasing the

capture area of the loop. The loop capture area can also be increased by using coupled DC

SQUIDs [16]. The coupled DC SQUID uses a large loop that is inductively coupled with

the DC SQUID loop to increase the capture area.

4.3.2 Sensor Responsitivity.

Responsitivity is a metric used for the characterization of optical detectors [14].

Responsitivity of a detector is given by the general relationship [14],

R =
output signal
input power

(4.13)

with units for responsitivity R given by the units for the relationship. Most commonly, the

unit for responsitivity is volts per watt [14]. Generally, responsitivity R is a function of

wavelength for the incident radiation and can be defined as [14],

R( f ) =
VRMS ( f )
PREC( f )

(4.14)

where R( f ) is the responsitivity (V/W), VRMS is the root mean square of the voltage

response (V), and PREC is the power received (W). Equation 4.14 is used to compute the

responsitivity for the DC SQUID and the BDOT sensor. RMS voltage for the DC SQUID is

computed using the 12 sample per cycle waveform at each frequency in the HF band. The
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received power for the DC SQUID is computed by multiplying Equation 4.11 with the DC

SQUID loop area. RMS voltage for the BDOT sensor is taken from the research conducted

by Captain Hardin for the characterization of the BDOT sensor. Capt Hardin computed

the power received by the BDOT sensor, and is included in Captain Hardin’s dataset. The

responsitivity for the DC SQUID and the BDOT sensor are shown in Figure 4.32. The

responsitivity of the DC SQUID sensor is shown to be approximately 30,000 times greater

than that of the BDOT sensor, providing a better HF detection capability for its size.

Figure 4.32: Comparison between the BDOT sensor and the DC SQUID sensor
responsitivity. DC SQUID sensor shows a responsitivity of 30,000x greater than the BDOT
sensor.
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V. Conclusion and Future Work

Chapter V presents a summary of superconducting quantum interference device

research for application to high frequency direction finding.

5.1 SQUIDs and Time-Varying Magnetic Flux Detection

Several design configurations for the SQUID sensors are available but the DC SQUID

is the most sensitive detector of magnetic flux. In addition to flux sensitivity, the ultra-low

thermal noise properties of the DC SQUID provide optimum conditions for the detection

of HF magnetic flux. The RCSJ circuit representation is used to model the DC SQUID

electrical operating characteristics with a coupled pair of second order ordinary differential

equations and a link equation for the junction phase difference δ1 and δ2. A negligible

junction capacitance assumption reduces the model equations to a two-dimensional set of

first order ODEs with the link equation remaining unaffected. The two-dimensional first

order ODEs are numerically solved with the RKF-45 ODE solver to produce a solution for

the DC SQUID instantaneous voltage.

The DC SQUID electrical operating characteristic is examined by varying the applied

static magnetic flux and bias current to produce the flux to voltage transfer function. The

voltage transfer function is seen to be periodic with a period of one flux quantum φ0, with

the maximum voltage developing at 0.5φ0. The useable magnetic flux range for the DC

SQUID is 0 to 0.5φ0 since the transfer function is periodic with respect to the flux quantum,

so intervals of φ0 will produce the same voltage solution.

The condition that produces the largest voltage response in the transfer function is with

a bias current equal twice the critical current. A bias current of twice the critical current

and the selection of a resistance value are used to maximizing the flux to voltage transfer

function for DC SQUID HF examination. DC SQUID thermal noise is introduced using an
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additional current source in the RCSJ circuit representation. The addition of thermal noise

rounds out the sharp voltage transitions seen for the DC SQUID voltage transfer function

and I-V characteristic. Implementation of the RKF-45 ODE solver is verified by recreating

data figures from DC SQUID research material, with computed results nearly identical to

the data figures in sources [16, 40].

5.2 SQUID High Frequency Reception

DC SQUID instantaneous voltage is computed with an applied time-varying magnetic

flux signal of frequency f. The magnitude of the flux signal is simulated using |ϕ| = 0.25

and chosen to be within the usable flux range of the DC SQUID. Time-varying applied

flux signal frequencies are chosen to span the HF band. A fast time-average is computed

using the DC SQUID instantaneous voltage over the time interval ∆t to produce the final

voltage waveform. Fast time averaging produces a voltage waveform resembling a rectified

input signal with half the period of the applied flux signal with a null voltage developing

for the end of each cycle reconstruction. This null voltage remains with increasing the

bias current and changing the modulation parameter βL. The periodicity of the fast time

averaged waveform allows for conventional spatial filtering techniques to be when used in

an antenna array.

5.3 Future Work

The DC SQUID produces voltage waveforms that are periodic, preserving phase,

indicating compatibility with AOA estimation techniques, but there are several issues

needing to be solved before a usable antenna element is produced. First, the DC SQUID

contains a narrow usable magnetic flux range of 0 to 0.5φ0. In addition, the flux range

is curved, as shown in the DC SQUID transfer function Figure 3.18. The flux range is

easily exceeded, cause flux aliasing to occur. The usable magnetic flux range must be

expanded to over several thousand flux quanta φ0 to capture large flux valued signals. The
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useful range should have no curvature with a constant slope to be able to provide minimal

signal distortion. The SQUIF and BI-SQUID sensors are two devices that expand and

provide constant slope transfer functions, however these devices may also exhibit voltage

rectification based some of the transfer functions seen for these devices during the course

of research. Second, the DC SQUID produces small voltages. The voltage output can be

increased by arranging the SQUID sensors into an array to increase the voltage signal,

or by using an amplifier to increase the voltage, however this will introduce a greater

amount of noise than by using SQUID arrays. SQUID can also be used for ultra low

noise amplification and could also be used for this purpose to provide a self contained

detection and amplification system [31]. Fourth, the DC SQUID radiation patterns remain

unknown. The current EM solvers cannot simulate flux quantization, the Josephson effect,

and have only begun to model superconducting phenomena such as the current density

within a superconductor.

5.4 Conclusions

The DC SQUID is shown to produce a voltage waveform representative of the applied

time-varying magnetic flux signal. The reception range of a single uncoupled DC SQUID

is poor, however, DC SQUIDs are often arranged into an array to increase voltage levels

and to increase the total flux capture area. HF reception range is significantly increased

by increasing the flux capture area, and satisfactory HF reception can be achieved with a

capture area as small as . In addition to SQUID arrays, the flux capture area is increased

using flux focusing techniques and inductively coupled SQUIDs. The HF reception using

SQUID technology is viable for achieving the desired HF reception characteristics of an

airborne HF DF system.
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Appendix A: Additional Noise-free DC SQUID High Frequency Simulations

Appendix A contains the remaining data figures for the noise-free case with an applied

flux signal ϕ(t), the DC SQUID voltage response v(t) for the time-varying applied flux with

magnitude |ϕ| = 0.25φ0 Wb and frequency f = 15 and 30 MHz, and the fast time-average

computation that produces 12 voltage samples per cycle.
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Figure A.1: (a) Applied magnetic flux signal ϕ(t) with f = 5 MHz and |ϕ| = 0.25φ0 Wb.
(b) Noise-free DC SQUID instantaneous voltage v(t) develops in response to the applied
magnetic flux signal. (c) Voltage samples produced by fast time-averaging v(t) for a time
interval ∆t set to produce 12 voltage samples per cycle. Voltage bias is removed to shift
the voltage samples to zero, allowing for an accurate sample representation for the 15 MHz
applied magnetic flux signal ϕ(t).
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Figure A.2: (a) Applied magnetic flux signal ϕ(t) with f = 30 MHz and |ϕ| = 0.25φ0 Wb.
(b) Noise-free DC SQUID instantaneous voltage v(t) develops in response to the applied
magnetic flux signal. (c) Voltage samples produced by fast time-averaging v(t) for a time
interval ∆t set to produce 12 voltage samples per cycle. Voltage bias is removed to shift
the voltage samples to zero, allowing for an accurate sample representation for the 30 MHz
applied magnetic flux signal ϕ(t).
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Appendix B: Additional Noise DC SQUID High Frequency Simulations

Appendix B contains the remaining data figures for the thermal noise case with an

applied flux signal ϕ(t), the DC SQUID voltage response v(t) with thermal noise for the

time-varying applied flux with magnitude |ϕ| = 0.25φ0 Wb and frequency set f = 15 and

30 MHz, and the fast time-average computation that produces 12 voltage samples per cycle.
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Figure B.1: (a) Applied magnetic flux signal ϕ(t) with f = 15 MHz and |ϕ| = 0.25φ0 Wb.
(b) DC SQUID instantaneous voltage v(t) develops in response to the applied magnetic flux
signal including thermal noise. (c) Voltage samples produced by fast time-averaging v(t)
for a time interval ∆t set to produce 12 voltage samples per cycle. Voltage bias is removed
to shift the voltage samples to zero, allowing for an accurate sample representation for the
15 MHz applied magnetic flux signal ϕ(t).
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Figure B.2: (a) Applied magnetic flux signal ϕ(t) with f = 30 MHz and |ϕ| = 0.25φ0 Wb.
(b) DC SQUID instantaneous voltage v(t) develops in response to the applied magnetic flux
signal including thermal noise. (c) Voltage samples produced by fast time-averaging v(t)
for a time interval ∆t set to produce 12 voltage samples per cycle. Voltage bias is removed
to shift the voltage samples to zero, allowing for an accurate sample representation for the
30 MHz applied magnetic flux signal ϕ(t).
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Appendix C: Additional Noise DC SQUID High Frequency Simulations

Appendix C contains data figures showing the applied flux signal ϕ(t), the DC SQUID

voltage response v(t) for the time-varying applied flux with magnitude |ϕ| = 0.25φ0 Wb

and frequency set f = 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 and 30 MHz, and the fast

time-average computation that produces 12 voltage samples per cycle.
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Figure C.1: (a) Applied magnetic flux signal ϕ(t) with f = 5 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 5 MHz applied magnetic flux signal ϕ(t).
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Figure C.2: (a) Applied magnetic flux signal ϕ(t) with f = 7 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 7 MHz applied magnetic flux signal ϕ(t).
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Figure C.3: (a) Applied magnetic flux signal ϕ(t) with f = 9 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 9 MHz applied magnetic flux signal ϕ(t).
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Figure C.4: (a) Applied magnetic flux signal ϕ(t) with f = 11 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 11 MHz applied magnetic flux signal ϕ(t).
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Figure C.5: (a) Applied magnetic flux signal ϕ(t) with f = 13 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 13 MHz applied magnetic flux signal ϕ(t).
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Figure C.6: (a) Applied magnetic flux signal ϕ(t) with f = 15 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 15 MHz applied magnetic flux signal ϕ(t).
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Figure C.7: (a) Applied magnetic flux signal ϕ(t) with f = 17 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 17 MHz applied magnetic flux signal ϕ(t).
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Figure C.8: (a) Applied magnetic flux signal ϕ(t) with f = 19 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 19 MHz applied magnetic flux signal ϕ(t).
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Figure C.9: (a) Applied magnetic flux signal ϕ(t) with f = 21 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 21 MHz applied magnetic flux signal ϕ(t).
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Figure C.10: (a) Applied magnetic flux signal ϕ(t) with f = 23 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 23 MHz applied magnetic flux signal ϕ(t).

111



www.manaraa.com

Figure C.11: (a) Applied magnetic flux signal ϕ(t) with f = 25 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 25 MHz applied magnetic flux signal ϕ(t).
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Figure C.12: (a) Applied magnetic flux signal ϕ(t) with f = 27 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 27 MHz applied magnetic flux signal ϕ(t).
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Figure C.13: (a) Applied magnetic flux signal ϕ(t) with f = 29 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 29 MHz applied magnetic flux signal ϕ(t).
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Figure C.14: (a) Applied magnetic flux signal ϕ(t) with f = 30 MHz and |ϕ| = 0.25φ0 Wb
with 10dB additional noise. (b) DC SQUID instantaneous voltage v(t) develops in response
to the applied magnetic flux signal including thermal noise. (c) Voltage samples produced
by fast time-averaging v(t) for a time interval ∆t set to produce 12 voltage samples per
cycle. Voltage bias is removed to shift the voltage samples to zero, allowing for an accurate
sample representation for the 30 MHz applied magnetic flux signal ϕ(t).
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